2dxi

From Proteopedia

Jump to: navigation, search

2.2 A crystal structure of glutamyl-tRNA synthetase from Thermus thermophilus complexed with tRNA(Glu), ATP, and L-glutamol

Structural highlights

2dxi is a 4 chain structure with sequence from Thermus thermophilus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:ATP, GAU, MG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN

Function

SYE_THET8 Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Glutamyl-tRNA synthetase (GluRS) is one of the aminoacyl-tRNA synthetases that require the cognate tRNA for specific amino acid recognition and activation. We analyzed the role of tRNA in amino acid recognition by crystallography. In the GluRS*tRNA(Glu)*Glu structure, GluRS and tRNA(Glu) collaborate to form a highly complementary L-glutamate-binding site. This collaborative site is functional, as it is formed in the same manner in pretransition-state mimic, GluRS*tRNA(Glu)*ATP*Eol (a glutamate analog), and posttransition-state mimic, GluRS*tRNA(Glu)*ESA (a glutamyl-adenylate analog) structures. In contrast, in the GluRS*Glu structure, only GluRS forms the amino acid-binding site, which is defective and accounts for the binding of incorrect amino acids, such as D-glutamate and L-glutamine. Therefore, tRNA(Glu) is essential for formation of the completely functional binding site for L-glutamate. These structures, together with our previously described structures, reveal that tRNA plays a crucial role in accurate positioning of both L-glutamate and ATP, thus driving the amino acid activation.

Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase.,Sekine S, Shichiri M, Bernier S, Chenevert R, Lapointe J, Yokoyama S Structure. 2006 Dec;14(12):1791-9. PMID:17161369[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Sekine S, Nureki O, Shimada A, Vassylyev DG, Yokoyama S. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol. 2001 Mar;8(3):203-6. PMID:11224561 doi:10.1038/84927
  2. Sekine S, Shichiri M, Bernier S, Chenevert R, Lapointe J, Yokoyama S. Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure. 2006 Dec;14(12):1791-9. PMID:17161369 doi:10.1016/j.str.2006.10.005
  3. Sekine S, Shichiri M, Bernier S, Chenevert R, Lapointe J, Yokoyama S. Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure. 2006 Dec;14(12):1791-9. PMID:17161369 doi:10.1016/j.str.2006.10.005

Contents


PDB ID 2dxi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools