Structural highlights
Function
MFD_ECOLI Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site. Can also dissociate RNAP that is blocked by low concentration of nucleoside triphosphates or by physical obstruction, such as bound proteins. In addition, can rescue arrested complexes by promoting forward translocation. Has ATPase activity, which is required for removal of stalled RNAP, but seems to lack helicase activity. May act through a translocase activity that rewinds upstream DNA, leading either to translocation or to release of RNAP when the enzyme active site can not continue elongation.[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Selby CP, Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993 Apr 2;260(5104):53-8. PMID:8465200
- ↑ Selby CP, Sancar A. Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J Biol Chem. 1995 Mar 3;270(9):4882-9. PMID:7876261
- ↑ Selby CP, Sancar A. Structure and function of transcription-repair coupling factor. II. Catalytic properties. J Biol Chem. 1995 Mar 3;270(9):4890-5. PMID:7876262
- ↑ Park JS, Marr MT, Roberts JW. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell. 2002 Jun 14;109(6):757-67. PMID:12086674
- ↑ Murphy MN, Gong P, Ralto K, Manelyte L, Savery NJ, Theis K. An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res. 2009 Oct;37(18):6042-53. Epub 2009 Aug 21. PMID:19700770 doi:10.1093/nar/gkp680