2f6f
From Proteopedia
The structure of the S295F mutant of human PTP1B
Structural highlights
FunctionPTN1_HUMAN Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedRegions of protein-tyrosine phosphatase (PTP) 1B that are distant from the active site yet affect inhibitor binding were identified by a novel library screen. This screen was based on the observation that expression of v-Src in yeast leads to lethality, which can be rescued by the coexpression of PTP1B. However, this rescue is lost when yeast are grown in the presence of PTP1B inhibitors. To identify regions of PTP1B (amino acids 1-400, catalytic domain plus 80-amino acid C-terminal tail) that can affect the binding of the difluoromethyl phosphonate (DFMP) inhibitor 7-bromo-6-difluoromethylphosphonate 3-naphthalenenitrile, a library coexpressing PTP1B mutants and v-Src was generated, and the ability of yeast to grow in the presence of the inhibitor was evaluated. PTP1B inhibitor-resistant mutations were found to concentrate on helix alpha7 and its surrounding region, but not in the active site. No resistant amino acid substitutions were found to occur in the C-terminal tail, suggesting that this region has little effect on active-site inhibitor binding. An in-depth characterization of a resistant substitution localizing to region alpha7 (S295F) revealed that this change minimally affected enzyme catalytic activity, but significantly reduced the potency of a panel of structurally diverse DFMP PTP1B inhibitors. This loss of inhibitor potency was found to be due to the difluoro moiety of these inhibitors because only the difluoro inhibitors were shifted. For example, the inhibitor potency of a monofluorinated or non-fluorinated analog of one of these DFMP inhibitors was only minimally affected. Using this type of library screen, which can scan the nearly full-length PTP1B sequence (catalytic domain and C-terminal tail) for effects on inhibitor binding, we have been able to identify novel regions of PTP1B that specifically affect the binding of DFMP inhibitors. Residues distant from the active site influence protein-tyrosine phosphatase 1B inhibitor binding.,Montalibet J, Skorey K, McKay D, Scapin G, Asante-Appiah E, Kennedy BP J Biol Chem. 2006 Feb 24;281(8):5258-66. Epub 2005 Dec 6. PMID:16332678[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|