2fn9

From Proteopedia

Jump to: navigation, search

Thermotoga maritima Ribose Binding Protein Unliganded Form

Structural highlights

2fn9 is a 2 chain structure with sequence from Thermotoga maritima MSB8. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.4Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q9X053_THEMA

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Members of the periplasmic binding protein (PBP) superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements) and local (rotamer changes, backbone motion), therefore is not only important for understanding their biological function but also for protein engineering experiments. RESULTS: Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (app Tm value is 108 degrees C) than the mesophilic Escherichia coli homolog (ecRBP) (app Tm value is 56 degrees C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. CONCLUSION: Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different mechanisms to form a ligand-bound state.

Ligand-induced conformational changes in a thermophilic ribose-binding protein.,Cuneo MJ, Beese LS, Hellinga HW BMC Struct Biol. 2008 Nov 19;8:50. PMID:19019243[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Cuneo MJ, Beese LS, Hellinga HW. Ligand-induced conformational changes in a thermophilic ribose-binding protein. BMC Struct Biol. 2008 Nov 19;8:50. PMID:19019243 doi:10.1186/1472-6807-8-50

Contents


PDB ID 2fn9

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools