2g3r

From Proteopedia

Jump to: navigation, search

Crystal Structure of 53BP1 tandem tudor domains at 1.2 A resolution

Structural highlights

2g3r is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.25Å
Ligands:SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TP53B_HUMAN Note=A chromosomal aberration involving TP53BP1 is found in a form of myeloproliferative disorder chronic with eosinophilia. Translocation t(5;15)(q33;q22) with PDGFRB creating a TP53BP1-PDGFRB fusion protein.

Function

TP53B_HUMAN Plays a key role in the response to DNA damage. May have a role in checkpoint signaling during mitosis. Enhances TP53-mediated transcriptional activation.[1] [2]

Publication Abstract from PubMed

Histone lysine methylation has been linked to the recruitment of mammalian DNA repair factor 53BP1 and putative fission yeast homolog Crb2 to DNA double-strand breaks (DSBs), but how histone recognition is achieved has not been established. Here we demonstrate that this link occurs through direct binding of 53BP1 and Crb2 to histone H4. Using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, we show that, despite low amino acid sequence conservation, both 53BP1 and Crb2 contain tandem tudor domains that interact with histone H4 specifically dimethylated at Lys20 (H4-K20me2). The structure of 53BP1/H4-K20me2 complex uncovers a unique five-residue 53BP1 binding cage, remarkably conserved in the structure of Crb2, that best accommodates a dimethyllysine but excludes a trimethyllysine, thus explaining the methylation state-specific recognition of H4-K20. This study reveals an evolutionarily conserved molecular mechanism of targeting DNA repair proteins to DSBs by direct recognition of H4-K20me2.

Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.,Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G Cell. 2006 Dec 29;127(7):1361-73. PMID:17190600[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
252 reviews cite this structure
Kouzarides et al. (2007)
No citations found

References

  1. Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science. 2002 Nov 15;298(5597):1435-8. Epub 2002 Oct 3. PMID:12364621 doi:10.1126/science.1076182
  2. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006 Dec 29;127(7):1361-73. PMID:17190600 doi:10.1016/j.cell.2006.10.043
  3. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006 Dec 29;127(7):1361-73. PMID:17190600 doi:10.1016/j.cell.2006.10.043

Contents


PDB ID 2g3r

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools