| Structural highlights
Function
[R1AB_CVHSA] The replicase polyprotein of coronaviruses is a multifunctional protein: it contains the activities necessary for the transcription of negative stranded RNA, leader RNA, subgenomic mRNAs and progeny virion RNA as well as proteinases responsible for the cleavage of the polyprotein into functional products (By similarity).[1] [2] [3] The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.[4] [5] [6] The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1-phosphate (ADRP)-binding function.[7] [8] [9] The helicase which contains a zinc finger structure displays RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Its ATPase activity is strongly stimulated by poly(U), poly(dT), poly(C), poly(dA), but not by poly(G). Activity of helicase is dependent on magnesium.[10] [11] [12] The exoribonuclease acts on both ssRNA and dsRNA in a 3' to 5' direction.[13] [14] [15] Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.[16] [17] [18] Nsp9 is a ssRNA-binding protein.[19] [20] [21] NendoU is a Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.[22] [23] [24]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.
Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.,Lee TW, Cherney MM, Liu J, James KE, Powers JC, Eltis LD, James MN J Mol Biol. 2007 Feb 23;366(3):916-32. Epub 2006 Dec 2. PMID:17196984[25]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Lee TW, Cherney MM, Liu J, James KE, Powers JC, Eltis LD, James MN. Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase. J Mol Biol. 2007 Feb 23;366(3):916-32. Epub 2006 Dec 2. PMID:17196984 doi:http://dx.doi.org/10.1016/j.jmb.2006.11.078
|