2hhd
From Proteopedia
OXYGEN AFFINITY MODULATION BY THE N-TERMINI OF THE BETA-CHAINS IN HUMAN AND BOVINE HEMOGLOBIN
Structural highlights
DiseaseHBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] FunctionHBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of the mutant deoxyhemoglobin in which the beta-globin Val67(E11) has been replaced with threonine [Fronticelli et al. (1993) Biochemistry 32, 1235-1242] has been determined at 2.2 A resolution. Prior to the crystal structure determination, molecular modeling indicated that the Thr67(E11) side chain hydroxyl group in the distal beta-heme pocket forms a hydrogen bond with the backbone carbonyl of His63(E7) and is within hydrogen-bonding distance of the N delta of His63(E7). The mutant crystal structure indicates only small changes in conformation in the vicinity of the E11 mutation confirming the molecular modeling predictions. Comparison of the structures of the mutant beta-subunits and recombinant porcine myoglobin with the identical mutation [Cameron et al. (1993) Biochemistry 32, 13061-13070] indicates similar conformations of residues in the distal heme pocket, but there is no water molecule associated with either of the threonines of the beta-subunits. The introduction of threonine into the distal heme pocket, despite having only small perturbations in the local structure, has a marked affect on the interaction with ligands. In the oxy derivative there is a 2-fold decrease in O2 affinity [Fronticelli et al. (1993) Biochemistry 32, 1235-1242], and the rate of autoxidation is increased by 2 orders of magnitude. In the CO derivative the IR spectrum shows modifications with respect to that of normal human hemoglobin, suggesting the presence of multiple CO conformers. In the nitrosyl derivative an interaction with the O gamma atom of Thr67(E11) is probably responsible for the 10-fold increase in the rate of NO release from the beta-subunits. In the aquomet derivative there is a 6-fold decrease in the rate of hemin dissociation suggesting an interaction of the Fe-coordinated water with the O gamma of Thr67(E11). Crystallographic, molecular modeling, and biophysical characterization of the valine beta 67 (E11)-->threonine variant of hemoglobin.,Pechik I, Ji X, Fidelis K, Karavitis M, Moult J, Brinigar WS, Fronticelli C, Gilliland GL Biochemistry. 1996 Feb 13;35(6):1935-45. PMID:8639677[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|