2hi3
From Proteopedia
Solution structure of the homeodomain-only protein HOP
Structural highlights
FunctionHOP_MOUSE Atypical homeodomain protein which does not bind DNA and is required to modulate cardiac growth and development. Acts via its interaction with SRF, thereby modulating the expression of SRF-dependent cardiac-specific genes and cardiac development. Prevents SRF-dependent transcription either by inhibiting SRF binding to DNA or by recruiting histone deacetylase (HDAC) proteins that prevent transcription by SRF. Overexpression causes cardiac hypertrophy.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHomeodomain-only protein (HOP) is an 8-kDa transcriptional corepressor that is essential for the normal development of the mammalian heart. Previous studies have shown that HOP, which consists entirely of a putative homeodomain, acts downstream of Nkx2.5 and associates with the serum response factor (SRF), repressing transcription from SRF-responsive genes. HOP is also able to recruit histone deacetylase (HDAC) activity, consistent with its ability to repress transcription. Unlike other classic homeodomain proteins, HOP does not appear to interact with DNA, although it has been unclear if this is because of an overall divergent structure or because of specific amino acid differences between HOP and other homeodomains. To work toward an understanding of HOP function, we have determined the 3D structure of full-length HOP and used a range of biochemical assays to define the parts of the protein that are functionally important for its repression activity. We show that HOP forms a classical homeodomain fold but that it cannot recognize double stranded DNA, a result that emphasizes the importance of caution in predicting protein function from sequence homology alone. We also demonstrate that two distinct regions on the surface of HOP are required for its ability to repress an SRF-driven reporter gene, and it is likely that these motifs direct interactions between HOP and partner proteins such as SRF- and HDAC-containing complexes. Our results demonstrate that the homeodomain fold has been co-opted during evolution for functions other than sequence-specific DNA binding and suggest that HOP functions as an adaptor protein to mediate transcriptional repression. Analysis of the structure and function of the transcriptional coregulator HOP.,Kook H, Yung WW, Simpson RJ, Kee HJ, Shin S, Lowry JA, Loughlin FE, Yin Z, Epstein JA, Mackay JP Biochemistry. 2006 Sep 5;45(35):10584-90. PMID:16939210[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Large Structures | Mus musculus | Epstein JA | Kook H | Mackay JP | Simpson RJ | Yung WW