| Structural highlights
Function
[AAUA_ALCFA] Oxidizes primary aromatic amines and, more slowly, some long-chain aliphatic amines, but not methylamine or ethylamine. Uses azurin as an electron acceptor to transfer electrons from the reduced tryptophylquinone cofactor.[1] [2] [3] [4] [5] [6] [7] [AAUB_ALCFA] Oxidizes primary aromatic amines and, more slowly, some long-chain aliphatic amines, but not methylamine or ethylamine. Uses azurin as an electron acceptor to transfer electrons from the reduced tryptophylquinone cofactor.[8] [9] [10] [11]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Chistoserdov AY. Cloning, sequencing and mutagenesis of the genes for aromatic amine dehydrogenase from Alcaligenes faecalis and evolution of amine dehydrogenases. Microbiology. 2001 Aug;147(Pt 8):2195-202. PMID:11495996
- ↑ Hothi P, Khadra KA, Combe JP, Leys D, Scrutton NS. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. Cofactor assembly and catalytic properties of recombinant enzyme expressed in Paracoccus denitrificans. FEBS J. 2005 Nov;272(22):5894-909. PMID:16279953 doi:http://dx.doi.org/EJB4990
- ↑ Govindaraj S, Eisenstein E, Jones LH, Sanders-Loehr J, Chistoserdov AY, Davidson VL, Edwards SL. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme. J Bacteriol. 1994 May;176(10):2922-9. PMID:8188594
- ↑ Edwards SL, Davidson VL, Hyun YL, Wingfield PT. Spectroscopic evidence for a common electron transfer pathway for two tryptophan tryptophylquinone enzymes. J Biol Chem. 1995 Mar 3;270(9):4293-8. PMID:7876189
- ↑ Sukumar N, Chen ZW, Ferrari D, Merli A, Rossi GL, Bellamy HD, Chistoserdov A, Davidson VL, Mathews FS. Crystal structure of an electron transfer complex between aromatic amine dehydrogenase and azurin from Alcaligenes faecalis. Biochemistry. 2006 Nov 14;45(45):13500-10. PMID:17087503 doi:http://dx.doi.org/10.1021/bi0612972
- ↑ Roujeinikova A, Scrutton NS, Leys D. Atomic level insight into the oxidative half-reaction of aromatic amine dehydrogenase. J Biol Chem. 2006 Dec 29;281(52):40264-72. Epub 2006 Sep 27. PMID:17005560 doi:http://dx.doi.org/10.1074/jbc.M605559200
- ↑ Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D. Atomic description of an enzyme reaction dominated by proton tunneling. Science. 2006 Apr 14;312(5771):237-41. PMID:16614214 doi:312/5771/237
- ↑ Chistoserdov AY. Cloning, sequencing and mutagenesis of the genes for aromatic amine dehydrogenase from Alcaligenes faecalis and evolution of amine dehydrogenases. Microbiology. 2001 Aug;147(Pt 8):2195-202. PMID:11495996
- ↑ Hothi P, Khadra KA, Combe JP, Leys D, Scrutton NS. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. Cofactor assembly and catalytic properties of recombinant enzyme expressed in Paracoccus denitrificans. FEBS J. 2005 Nov;272(22):5894-909. PMID:16279953 doi:http://dx.doi.org/EJB4990
- ↑ Govindaraj S, Eisenstein E, Jones LH, Sanders-Loehr J, Chistoserdov AY, Davidson VL, Edwards SL. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme. J Bacteriol. 1994 May;176(10):2922-9. PMID:8188594
- ↑ Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D. Atomic description of an enzyme reaction dominated by proton tunneling. Science. 2006 Apr 14;312(5771):237-41. PMID:16614214 doi:312/5771/237
|