2i4z
From Proteopedia
Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). This structure has been obtained from crystals soaked for 6 hours.
Structural highlights
DiseasePPARG_HUMAN Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. FunctionPPARG_HUMAN Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of glucose and lipid metabolism. They are activated by natural ligands, such as fatty acids, and are also targets of synthetic antidiabetic and hypolipidemic drugs. By using cell-based reporter assays, we studied the transactivation activity of two enantiomeric ureidofibrate-like derivatives. In particular, we show that the R-enantiomer, (R)-1, is a full agonist of PPARgamma, whereas the S-enantiomer, (S)-1, is a less potent partial agonist. Most importantly, we report the x-ray crystal structures of the PPARgamma ligand binding domain complexed with the R- and the S-enantiomer, respectively. The analysis of the two crystal structures shows that the different degree of stabilization of the helix 12 induced by the ligand determines its behavior as full or partial agonist. Another crystal structure of the PPARgamma.(S)-1 complex, only differing in the soaking time of the ligand, is also presented. The comparison of the two structures of the complexes with the partial agonist reveals significant differences and is suggestive of the possible coexistence in solution of transcriptionally active and inactive forms of helix 12 in the presence of a partial agonist. Mutation analysis confirms the importance of Leu(465), Leu(469), and Ile(472) in the activation by (R)-1 and underscores the key role of Gln(286) in the PPARgamma activity. Insights into the mechanism of partial agonism: crystal structures of the peroxisome proliferator-activated receptor gamma ligand-binding domain in the complex with two enantiomeric ligands.,Pochetti G, Godio C, Mitro N, Caruso D, Galmozzi A, Scurati S, Loiodice F, Fracchiolla G, Tortorella P, Laghezza A, Lavecchia A, Novellino E, Mazza F, Crestani M J Biol Chem. 2007 Jun 8;282(23):17314-24. Epub 2007 Apr 2. PMID:17403688[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|