2i6b

From Proteopedia

Jump to: navigation, search

Human Adenosine Kinase in Complex with An Acetylinic Inhibitor

Structural highlights

2i6b is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:89I
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ADK_HUMAN Defects in ADK are the cause of hypermethioninemia due to adenosine kinase deficiency (HMAKD) [MIM:614300. A metabolic disorder characterized by global developmental delay, early-onset seizures, mild dysmorphic features, and characteristic biochemical anomalies, including persistent hypermethioninemia with increased levels of S-adenosylmethionine and S-adenosylhomocysteine. Homocysteine levels are typically normal.[1]

Function

ADK_HUMAN ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. Serves as a potential regulator of concentrations of extracellular adenosine and intracellular adenine nucleotides.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Adenosine kinase (AK) is an enzyme responsible for converting endogenous adenosine (ADO) to adenosine monophosphate (AMP) in an adenosine triphosphate- (ATP-) dependent manner. The structure of AK consists of two domains, the first a large alpha/beta Rossmann-like nucleotide binding domain that forms the ATP binding site, and a smaller mixed alpha/beta domain, which, in combination with the larger domain, forms the ADO binding site and the site of phosphoryl transfer. AK inhibitors have been under investigation as antinociceptive, antiinflammatory, and anticonvulsant as well as antiinfective agents. In this work, we report the structures of AK in complex with two classes of inhibitors: the first, ADO-like, and the second, a novel alkynylpyrimidine series. The two classes of structures, which contain structurally similar substituents, reveal distinct binding modes in which the AK structure accommodates the inhibitor classes by a 30 degrees rotation of the small domain relative to the large domain. This change in binding mode stabilizes an open and a closed intermediate structural state and provide structural insight into the transition required for catalysis. This results in a significant rearrangement of both the protein active site and the orientation of the alkynylpyrimidine ligand when compared to the observed orientation of nucleosidic inhibitors or substrates.

Crystal structures of human adenosine kinase inhibitor complexes reveal two distinct binding modes.,Muchmore SW, Smith RA, Stewart AO, Cowart MD, Gomtsyan A, Matulenko MA, Yu H, Severin JM, Bhagwat SS, Lee CH, Kowaluk EA, Jarvis MF, Jakob CL J Med Chem. 2006 Nov 16;49(23):6726-31. PMID:17154503[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg M, Jakobs C, Smith D, Struys E, von Dobeln U, Gustafsson CM, Lundeberg J, Wedell A. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet. 2011 Oct 7;89(4):507-15. doi: 10.1016/j.ajhg.2011.09.004. Epub, 2011 Sep 28. PMID:21963049 doi:10.1016/j.ajhg.2011.09.004
  2. Muchmore SW, Smith RA, Stewart AO, Cowart MD, Gomtsyan A, Matulenko MA, Yu H, Severin JM, Bhagwat SS, Lee CH, Kowaluk EA, Jarvis MF, Jakob CL. Crystal structures of human adenosine kinase inhibitor complexes reveal two distinct binding modes. J Med Chem. 2006 Nov 16;49(23):6726-31. PMID:17154503 doi:10.1021/jm060189a

Contents


PDB ID 2i6b

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools