2k3b
From Proteopedia
Seeing the Invisible: Structures of Excited Protein States by Relaxation Dispersion NMR
Structural highlights
FunctionABP1_YEAST Regulates ARP2/3 complex-mediated actin assembly. Recruits ARP2/3 complex to sides of preexisting actin filaments, which may promote nucleation or stabilization of filament branches. Binds to actin filaments, but not actin monomers. Actin binding is required for ARP2/3 complex activation. May also have a role in linking the actin cytoskeleton to endocytosis. recruits components of the endocytotic machinery to cortical actin patches, known sites of endocytosis.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMolecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)-ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of (15)N, (1)HN, (13)C(alpha), and (13)CO chemical shifts, along with (1)HN-(15)N, (1)H(alpha)-(13)C(alpha), and (1)HN-(13)CO residual dipolar couplings and (13)CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with (1)HN-(15)N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy.,Vallurupalli P, Hansen DF, Kay LE Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11766-71. Epub 2008 Aug 13. PMID:18701719[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|