2n2q
From Proteopedia
NMR solution structure of HsAFP1
Structural highlights
FunctionDEF1_HEUSA Possesses antifungal activity insensitive to inorganic cations. Causes germ tubes and hyphae to swell and form multiple hyphal buds. Binds to the plasma membrane of the fungus. Has no inhibitory effect on insect gut alpha-amylase.[1] [2] [3] Publication Abstract from PubMedPlant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an alpha-helix and a triple-stranded antiparallel beta-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 +/- 1.70 muM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 muM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 muM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the gamma-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures.,Vriens K, Cools TL, Harvey PJ, Craik DJ, Spincemaille P, Cassiman D, Braem A, Vleugels J, Nibbering PH, Drijfhout JW, De Coninck B, Cammue BP, Thevissen K PLoS One. 2015 Aug 6;10(8):e0132701. doi: 10.1371/journal.pone.0132701., eCollection 2015. PMID:26248029[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|