2o2n

From Proteopedia

Jump to: navigation, search

Solution structure of the anti-apoptotic protein Bcl-xL in complex with an acyl-sulfonamide-based ligand

Structural highlights

2o2n is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:LIW
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

B2CL1_HUMAN Potent inhibitor of cell death. Inhibits activation of caspases (By similarity). Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.[1] [2] Isoform Bcl-X(S) promotes apoptosis.[3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.

Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL.,Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng SC, Nimmer PM, Oltersdorf T, Park CM, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW J Med Chem. 2007 Feb 22;50(4):641-62. Epub 2007 Jan 26. PMID:17256834[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
  2. Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
  3. Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
  4. Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
  5. Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng SC, Nimmer PM, Oltersdorf T, Park CM, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem. 2007 Feb 22;50(4):641-62. Epub 2007 Jan 26. PMID:17256834 doi:http://dx.doi.org/10.1021/jm061152t

Contents


PDB ID 2o2n

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools