2ruh

From Proteopedia

Jump to: navigation, search

Chemical Shift Assignments for MIP and MDM2 in bound state

Structural highlights

2ruh is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding.

Function

MDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Publication Abstract from PubMed

The oncoprotein MDM2 binds to tumor suppressor protein p53 and inhibits its anticancer activity, which leads to promotion of tumor cell growth and tumor survival. Abrogation of the p53:MDM2 interaction reportedly results in reactivation of the p53 pathway and inhibition of tumor cell proliferation. We recently performed rigorous selection of MDM2-binding peptides by means of mRNA display and identified an optimal 12-mer peptide (PRFWEYWLRLME), named MDM2 Inhibitory Peptide (MIP), which shows higher affinity for MDM2 (and also its homolog, MDMX) and higher tumor cell proliferation suppression activity than known peptides. Here we determined the NMR solution structure of a MIP-MDM2 fusion protein to elucidate the structural basis of the tight binding of MIP to MDM2. A region spanning from Phe3 to Met11 of MIP forms a single alpha-helix, which is longer than those of the other MDM2-binding peptides. MIP shares a conserved Phe3-Trp7-Leu10 triad, whose side chains are oriented towards and fit into the hydrophobic pockets of MDM2. Additionally, hydrophobic surface patches that surround the hydrophobic pockets of MDM2 are covered by solvent-exposed MIP residues, Trp4, Tyr6, and Met11. Their hydrophobic interactions extend the interface of the two molecules and contribute to the strong binding. The potential MDM2 inhibition activity observed for MIP turned out to originate from its enlarged binding interface. The structural information obtained in the present study provides a road map for the rational design of strong inhibitors of MDM2:p53 binding.

Structural Basis for Inhibition of the MDM2:p53 Interaction by an Optimized MDM2-Binding Peptide Selected with mRNA Display.,Nagata T, Shirakawa K, Kobayashi N, Shiheido H, Tabata N, Sakuma-Yonemura Y, Horisawa K, Katahira M, Doi N, Yanagawa H PLoS One. 2014 Oct 2;9(10):e109163. doi: 10.1371/journal.pone.0109163., eCollection 2014. PMID:25275651[12]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Girnita L, Girnita A, Larsson O. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8247-52. Epub 2003 Jun 23. PMID:12821780 doi:10.1073/pnas.1431613100
  2. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004 Mar 26;13(6):879-86. PMID:15053880
  3. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol. 2004 Jul;6(7):665-72. Epub 2004 Jun 13. PMID:15195100 doi:10.1038/ncb1147
  4. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005 Dec 9;20(5):699-708. PMID:16337594 doi:10.1016/j.molcel.2005.10.017
  5. Brady M, Vlatkovic N, Boyd MT. Regulation of p53 and MDM2 activity by MTBP. Mol Cell Biol. 2005 Jan;25(2):545-53. PMID:15632057 doi:25/2/545
  6. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 2007 Feb 21;26(4):976-86. Epub 2007 Feb 8. PMID:17290220 doi:10.1038/sj.emboj.7601567
  7. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb;10(2):166-72. doi: 10.1038/embor.2008.231. Epub 2008 Dec 19. PMID:19098711 doi:10.1038/embor.2008.231
  8. Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene. 2009 Apr 2;28(13):1616-25. doi: 10.1038/onc.2009.5. Epub 2009 Feb 16. PMID:19219073 doi:10.1038/onc.2009.5
  9. Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K. ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem. 2010 Feb 12;285(7):4909-19. doi: 10.1074/jbc.M109.042341. Epub 2009 , Dec 4. PMID:19965871 doi:10.1074/jbc.M109.042341
  10. Gilmore-Hebert M, Ramabhadran R, Stern DF. Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways. Mol Cancer Res. 2010 Oct;8(10):1388-98. doi: 10.1158/1541-7786.MCR-10-0042. Epub , 2010 Sep 21. PMID:20858735 doi:10.1158/1541-7786.MCR-10-0042
  11. Fu X, Yucer N, Liu S, Li M, Yi P, Mu JJ, Yang T, Chu J, Jung SY, O'Malley BW, Gu W, Qin J, Wang Y. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4579-84. doi:, 10.1073/pnas.0912094107. Epub 2010 Feb 19. PMID:20173098 doi:10.1073/pnas.0912094107
  12. Nagata T, Shirakawa K, Kobayashi N, Shiheido H, Tabata N, Sakuma-Yonemura Y, Horisawa K, Katahira M, Doi N, Yanagawa H. Structural Basis for Inhibition of the MDM2:p53 Interaction by an Optimized MDM2-Binding Peptide Selected with mRNA Display. PLoS One. 2014 Oct 2;9(10):e109163. doi: 10.1371/journal.pone.0109163., eCollection 2014. PMID:25275651 doi:http://dx.doi.org/10.1371/journal.pone.0109163

Contents


PDB ID 2ruh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools