| Structural highlights
Disease
HPRT_HUMAN Defects in HPRT1 are the cause of Lesch-Nyhan syndrome (LNS) [MIM:300322. LNS is characterized by complete lack of enzymatic activity that results in hyperuricemia, choreoathetosis, mental retardation, and compulsive self-mutilation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Defects in HPRT1 are the cause of gout HPRT-related (GOUT-HPRT) [MIM:300323; also known as HPRT-related gout or Kelley-Seegmiller syndrome. Gout is characterized by partial enzyme activity and hyperuricemia.[11] [12] [13] [14] [15] [16] [:]
Function
HGXR_PLAFG Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Works with guanine, hypoxanthine and xanthine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway.HPRT_HUMAN Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The crystal structure of a chimera of Plasmodium falciparum (Pf) and human hypoxanthine guanine phosphoribosyltransferases (HGPRT), which consists of the core of the protein from the human enzyme and the hood region from the Pf enzyme, has been determined as a complex with the product guanosine monophosphate (GMP). The chimera can utilize hypoxanthine, guanine, and xanthine as substrates, similar to the Pf enzyme. It exists as a monomer-dimer mixture in solution, but shifts to a tetramer on addition of phosphoribosyl pyrophosphate (PRPP). The structural studies reveal that the asymmetric unit of the crystal consists of two monomers of the chimeric HGPRT. Surprisingly, the dimer interface of the chimera is the less extensive AC interface of the parent HGPRTs. An analysis of the crystal structures of the various human HGPRTs provides an explanation for the oligomeric characteristics of the chimera. Pro93 and Tyr197 form part of crucial interactions holding together the AB interface in the unliganded or GMP-bound forms of HGPRT, while Pro93 and His26 interact at the interface after binding of PRPP. Replacement of Tyr197 of human HGPRT by Ile207 in the chimera disrupts the interaction at the AB interface in the absence of PRPP. In the presence of PRPP, the interaction between Pro93 and His26 could restore the AB interface, shifting the chimeric enzyme to a tetrameric state. The structure provides valuable insights into the differences in the AB interface between Pf and human HGPRTs, which may be useful for designing selective inhibitors against the parasite enzyme.
Crystal structure of a chimera of human and Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferases provides insights into oligomerization.,Gayathri P, Sujay Subbayya IN, Ashok CS, Selvi TS, Balaram H, Murthy MR Proteins. 2008 Dec;73(4):1010-20. PMID:18536021[17]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Wilson JM, Kelley WN. Molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in a patient with the Lesch-Nyhan syndrome. J Clin Invest. 1983 May;71(5):1331-5. PMID:6853716
- ↑ Davidson BL, Pashmforoush M, Kelley WN, Palella TD. Genetic basis of hypoxanthine guanine phosphoribosyltransferase deficiency in a patient with the Lesch-Nyhan syndrome (HPRTFlint). Gene. 1988 Mar 31;63(2):331-6. PMID:3384338
- ↑ Davidson BL, Palella TD, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase: a single nucleotide substitution in cDNA clones isolated from a patient with Lesch-Nyhan syndrome (HPRTMidland). Gene. 1988 Aug 15;68(1):85-91. PMID:3265398
- ↑ Fujimori S, Davidson BL, Kelley WN, Palella TD. Identification of a single nucleotide change in the hypoxanthine-guanine phosphoribosyltransferase gene (HPRTYale) responsible for Lesch-Nyhan syndrome. J Clin Invest. 1989 Jan;83(1):11-3. PMID:2910902 doi:http://dx.doi.org/10.1172/JCI113846
- ↑ Gibbs RA, Nguyen PN, Edwards A, Civitello AB, Caskey CT. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics. 1990 Jun;7(2):235-44. PMID:2347587
- ↑ Skopek TR, Recio L, Simpson D, Dallaire L, Melancon SB, Ogier H, O'Neill JP, Falta MT, Nicklas JA, Albertini RJ. Molecular analyses of a Lesch-Nyhan syndrome mutation (hprtMontreal) by use of T-lymphocyte cultures. Hum Genet. 1990 Jun;85(1):111-6. PMID:2358296
- ↑ Gordon RB, Sculley DG, Dawson PA, Beacham IR, Emmerson BT. Identification of a single nucleotide substitution in the coding sequence of in vitro amplified cDNA from a patient with partial HPRT deficiency (HPRTBRISBANE). J Inherit Metab Dis. 1990;13(5):692-700. PMID:2246854
- ↑ Tarle SA, Davidson BL, Wu VC, Zidar FJ, Seegmiller JE, Kelley WN, Palella TD. Determination of the mutations responsible for the Lesch-Nyhan syndrome in 17 subjects. Genomics. 1991 Jun;10(2):499-501. PMID:2071157
- ↑ Burgemeister R, Rotzer E, Gutensohn W, Gehrke M, Schiel W. Identification of a new missense mutation in exon 2 of the human hypoxanthine phosphoribosyltransferase gene (HPRTIsar): a further example of clinical heterogeneity in HPRT deficiencies. Hum Mutat. 1995;5(4):341-4. PMID:7627191 doi:http://dx.doi.org/10.1002/humu.1380050413
- ↑ Liu G, Aral B, Zabot MT, Kamoun P, Ceballos-Picot I. The molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in French families; report of two novel mutations. Hum Mutat. 1998;Suppl 1:S88-90. PMID:9452051
- ↑ Wilson JM, Kobayashi R, Fox IH, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1983 May 25;258(10):6458-60. PMID:6853490
- ↑ Wilson JM, Tarr GE, Kelley WN. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci U S A. 1983 Feb;80(3):870-3. PMID:6572373
- ↑ Wilson JM, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. Structural alteration in a dysfunctional enzyme variant (HPRTMunich) isolated from a patient with gout. J Biol Chem. 1984 Jan 10;259(1):27-30. PMID:6706936
- ↑ Cariello NF, Scott JK, Kat AG, Thilly WG, Keohavong P. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich. Am J Hum Genet. 1988 May;42(5):726-34. PMID:3358423
- ↑ Davidson BL, Chin SJ, Wilson JM, Kelley WN, Palella TD. Hypoxanthine-guanine phosphoribosyltransferase. Genetic evidence for identical mutations in two partially deficient subjects. J Clin Invest. 1988 Dec;82(6):2164-7. PMID:3198771 doi:http://dx.doi.org/10.1172/JCI113839
- ↑ Davidson BL, Pashmforoush M, Kelley WN, Palella TD. Human hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular defect in a patient with gout (HPRTAshville). J Biol Chem. 1989 Jan 5;264(1):520-5. PMID:2909537
- ↑ Gayathri P, Sujay Subbayya IN, Ashok CS, Selvi TS, Balaram H, Murthy MR. Crystal structure of a chimera of human and Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferases provides insights into oligomerization. Proteins. 2008 Dec;73(4):1010-20. PMID:18536021 doi:10.1002/prot.22129
|