2vx1

From Proteopedia

Jump to: navigation, search

ephB4 kinase domain inhibitor complex

Structural highlights

2vx1 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.65Å
Ligands:7X8, MG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

EPHB4_HUMAN Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Together with its cognate ligand/functional ligand EFNB2 plays a central role in heart morphogenesis and angiogenesis through regulation of cell adhesion and cell migration. EPHB4-mediated forward signaling controls cellular repulsion and segregation form EFNB2-expressing cells. Plays also a role in postnatal blood vessel remodeling, morphogenesis and permeability and is thus important in the context of tumor angiogenesis.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Crystallographic studies of a range of 3-substituted anilinopyrimidine inhibitors of EphB4 have highlighted two alternative C-2 aniline conformations and this discovery has been exploited in the design of a highly potent series of 3,5-disubstituted anilinopyrimidines. The observed range of cellular activities has been rationalised on the basis of physicochemical and structural characteristics.

Inhibitors of the tyrosine kinase EphB4. Part 2: structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines.,Bardelle C, Coleman T, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG, Mortlock A, Read J, Roberts NJ, Robins P, Williams EJ Bioorg Med Chem Lett. 2008 Nov 1;18(21):5717-21. Epub 2008 Sep 27. PMID:18851911[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci. 2003 Jun 15;116(Pt 12):2461-70. Epub 2003 May 6. PMID:12734395 doi:10.1242/jcs.00426
  2. Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J, Hammes HP, Grobholz R, Ullrich A, Vajkoczy P. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J. 2006 Feb 8;25(3):628-41. Epub 2006 Jan 19. PMID:16424904 doi:10.1038/sj.emboj.7600949
  3. Bardelle C, Coleman T, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG, Mortlock A, Read J, Roberts NJ, Robins P, Williams EJ. Inhibitors of the tyrosine kinase EphB4. Part 2: structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines. Bioorg Med Chem Lett. 2008 Nov 1;18(21):5717-21. Epub 2008 Sep 27. PMID:18851911 doi:10.1016/j.bmcl.2008.09.087

Contents


PDB ID 2vx1

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools