2vxl

From Proteopedia

Jump to: navigation, search

Screening a Limited Structure-based Library Identifies UDP-GalNAc- Specific Mutants of alpha-1,3 Galactosyltransferase

Structural highlights

2vxl is a 1 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:MN, UDP
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GGTA1_BOVIN Transfer of galactose from UDP-galactose to an acceptor molecule (R).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3% of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.

Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of alpha-1,3-galactosyltransferase.,Tumbale P, Jamaluddin H, Thiyagarajan N, Acharya KR, Brew K Glycobiology. 2008 Dec;18(12):1036-43. Epub 2008 Sep 9. PMID:18782853[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Tumbale P, Jamaluddin H, Thiyagarajan N, Acharya KR, Brew K. Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of alpha-1,3-galactosyltransferase. Glycobiology. 2008 Dec;18(12):1036-43. Epub 2008 Sep 9. PMID:18782853 doi:10.1093/glycob/cwn083

Contents


PDB ID 2vxl

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools