2wat
From Proteopedia
Structure of the fungal type I FAS PPT domain in complex with CoA
Structural highlights
FunctionFAS2_YEAST Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The alpha subunit contains domains for: acyl carrier protein, 3-oxoacyl-[acyl-carrier-protein] reductase, and 3-oxoacyl-[acyl-carrier-protein] synthase. This subunit coordinates the binding of the six beta subunits to the enzyme complex.[HAMAP-Rule:MF_00101] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe fungal type I fatty acid synthase (FAS) is a 2.6 MDa multienzyme complex, catalyzing all necessary steps for the synthesis of long acyl chains. To be catalytically competent, the FAS must be activated by a posttranslational modification of the central acyl carrier domain (ACP) by an intrinsic phosphopantetheine transferase (PPT). However, recent X-ray structures of the fungal FAS revealed a barrel-shaped architecture, with PPT located at the outside of the barrel wall, spatially separated from the ACP caged in the inner volume. This separation indicated that the activation has to proceed before the assembly to the mature complex, in a conformation where the ACP and PPT domains can meet. To gain insight into the auto-activation reaction and also into the fungal FAS assembly pathway, we structurally and functionally characterized the Saccharomyces cerevisiae FAS type I PPT as part of the multienzyme protein and as an isolated domain. Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase.,Johansson P, Mulinacci B, Koestler C, Vollrath R, Oesterhelt D, Grininger M Structure. 2009 Aug 12;17(8):1063-74. PMID:19679086[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 6 reviews cite this structure No citations found See AlsoReferences
|
|