2yza
From Proteopedia
Crystal structure of kinase domain of Human 5'-AMP-activated protein kinase alpha-2 subunit mutant (T172D)
Structural highlights
Function[AAPK2_HUMAN] Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2. In response to nutrient limitation, promotes autophagy by phosphorylating and activating ULK1. AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it. May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it. Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a sensor to maintain energy balance at both the cellular and the whole-body levels and is therefore a potential target for drug design against metabolic syndrome, obesity and type 2 diabetes. Here, the crystal structure of the phosphorylated-state mimic T172D mutant kinase domain from the human AMPK alpha2 subunit is reported in the apo form and in complex with a selective inhibitor, compound C. The AMPK alpha2 kinase domain exhibits a typical bilobal kinase fold and exists as a monomer in the crystal. Like the wild-type apo form, the T172D mutant apo form adopts the autoinhibited structure of the `DFG-out' conformation, with the Phe residue of the DFG motif anchored within the putative ATP-binding pocket. Compound C binding dramatically alters the conformation of the activation loop, which adopts an intermediate conformation between DFG-out and DFG-in. This induced fit forms a compound-C binding pocket composed of the N-lobe, the C-lobe and the hinge of the kinase domain. The pocket partially overlaps with the putative ATP-binding pocket. These three-dimensional structures will be useful to guide drug discovery. Structural basis for compound C inhibition of the human AMP-activated protein kinase alpha2 subunit kinase domain.,Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S Acta Crystallogr D Biol Crystallogr. 2011 May;67(Pt 5):480-7. Epub 2011 Apr 14. PMID:21543851[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|
Categories: Human | Non-specific serine/threonine protein kinase | Kishishita, S | Structural genomic | Saijo, S | Shirouzu, M | Takagi, T | Yokoyama, S | Yoshikawa, S | Atp-binding | Cholesterol biosynthesis | Fatty acid biosynthesis | Glucose metabolism | Lipid synthesis | Magnesium | Metal-binding | National project on protein structural and functional analyse | Nppsfa | Nucleotide-binding | Phosphorylation | Rsgi | Serine/threonine protein kinase | Serine/threonine-protein kinase | Signaling protein | Steroid biosynthesis | Transferase