3alb
From Proteopedia
Cyclic Lys48-linked tetraubiquitin
Structural highlights
FunctionUBC_HUMAN Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedLys48-linked polyubiquitin chains serve as a signal for protein degradation by 26S proteasomes through its Ile44 hydrophobic patches interactions. The individual ubiquitin units of each chain are conjugated through an isopeptide bond between Lys48 and the C-terminal Gly76 of the preceding units. The conformation of Lys48-linked tetraubiquitin has been shown to change dynamically depending on solution pH. Here we enzymatically synthesized a wild-type Lys48-linked tetraubiquitin for structural study. In the synthesis, cyclic and non-cyclic species were obtained as major and minor fractions, respectively. This enabled us to solve the crystal structure of tetraubiquitin exclusively with native Lys48-linkages at 1.85 A resolution in low pH 4.6. The crystallographic data clearly showed that the C-terminus of the first ubiquitin is conjugated to the Lys48 residue of the fourth ubiquitin. The overall structure is quite similar to the closed form of engineered tetraubiquitin at near-neutral pH 6.7, previously reported, in which the Ile44 hydrophobic patches face each other. The structure of the second and the third ubiquitin units [Ub(2) approximately Ub(3)] connected through a native isopeptide bond is significantly different from the conformations of the corresponding linkage of the engineered tetraubiquitins, whereas the structures of Ub(1) approximately Ub(2) and Ub(3) approximately Ub(4) isopeptide bonds are almost identical to those of the previously reported structures. From these observations, we suggest that the flexible nature of the isopeptide linkage thus observed contributes to the structural arrangements of ubiquitin chains exemplified by the pH-dependent closed-to-open conformational transition of tetraubiquitin. Crystal structure of cyclic Lys48-linked tetraubiquitin.,Satoh T, Sakata E, Yamamoto S, Yamaguchi Y, Sumiyoshi A, Wakatsuki S, Kato K Biochem Biophys Res Commun. 2010 Aug 19. PMID:20728431[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|
Categories: Homo sapiens | Large Structures | Kato K | Sakata E | Satoh T | Sumiyoshi A | Wakatsuki S | Yamaguchi Y | Yamamoto S