3cm2
From Proteopedia
Crystal Structure of XIAP BIR3 domain in complex with a Smac-mimetic compound, Smac010
Structural highlights
DiseaseXIAP_HUMAN Defects in XIAP are the cause of lymphoproliferative syndrome X-linked type 2 (XLP2) [MIM:300635. XLP is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Symptoms include severe or fatal mononucleosis, acquired hypogammaglobulinemia, pancytopenia and malignant lymphoma.[1] FunctionXIAP_HUMAN Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis. Acts as a direct caspase inhibitor. Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry. Inactivates CASP9 by keeping it in a monomeric, inactive state. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, CASP3, CASP7, CASP8, CASP9, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS and BIRC5/survivin. Ubiquitinion of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation. Ubiquitinion of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation. Plays a role in copper homeostasis by ubiquitinationg COMMD1 and promoting its proteasomal degradation. Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation. Acts as an important regulator of innate immune signaling via regulation of Nodlike receptors (NLRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES. Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe X-linked inhibitor of apoptosis protein (XIAP) is overexpressed in several malignant cells where it prevents apoptosis by binding to, and blocking, the activation of caspase-3, -7, and -9. Human XIAP (479 residues) is composed of three tandem-repeated baculoviral IAP repeat (BIR) domains (BIR1-3), and by a C-terminal RING domain. Smac-DIABLO [second mitochondria-derived activator of caspases (Smac)-direct IAP binding protein with low pI (DIABLO)], the natural antagonist of XIAP, binds through its N-terminal sequence AVPI to the same surface groove, in the BIR domains, that binds caspases. Synthetic compounds mimicking such tetrapeptide motif effectively block the interaction between IAP and active caspases, thus triggering apoptosis. Peptidomimetics based on an azabicyclo[x.y.0]alkane scaffolds, have been shown to bind the BIR3 domain of XIAP with micromolar to nanomolar affinities, thus presenting attractive features for drug lead optimization. Here we report a study on three newly synthesized Smac mimetics, which have been characterized in their complexes with XIAP BIR3 domain through X-ray crystallography and molecular modelling/docking simulations. Based on analysis of the crystal structures, we show that specific substitutions at the 4-position of the azabicyclo[5.3.0]alkane scaffold results in sizeable effects on the peptidomimetic-BIR3 domain affinity. By means of functional, biophysical and simulative approaches we also propose that the same Smac mimetics can bind XIAP BIR2 domain at a location structurally related to the BIR3 domain AVPI binding groove. Details of the XIAP-Smac mimetic recognition principles highlighted by this study are discussed in light of the drug-like profile of the three (potentially proapoptotic) compounds developed that show improved performance in ADMET (adsorption, distribution, metabolism, excretion and toxicity) tests. Targeting the X-linked inhibitor of apoptosis protein through 4-substituted azabicyclo[5.3.0]alkane smac mimetics. Structure, activity, and recognition principles.,Mastrangelo E, Cossu F, Milani M, Sorrentino G, Lecis D, Delia D, Manzoni L, Drago C, Seneci P, Scolastico C, Rizzo V, Bolognesi M J Mol Biol. 2008 Dec 19;384(3):673-89. Epub 2008 Oct 7. PMID:18851976[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|