3dn2

From Proteopedia

Jump to: navigation, search

Bromopentafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant

Structural highlights

3dn2 is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:BBF, HED, PO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

We showed earlier that the mutation of Leu99 to alanine in bacteriophage T4 lysozyme creates an internal cavity of volume approximately 150 A(3) that binds benzene and a variety of other ligands. As such, this cavity provides an excellent target to study protein-ligand interaction. Here, we use low-temperature crystallography and related techniques to analyze the binding of halogen-incorporated benzenes typified by C(6)F(5)X, where X=H, F, Cl, Br or I, and C(6)H(5)X, where X=H or I was also studied. Because of the increased electron density of fluorine relative to hydrogen, the geometry of binding of the fluoro compounds can often be determined more precisely than their hydrogen-containing analogs. All of the ligands bind in essentially the same plane but the center of the phenyl ring can translate by up to 1.2 A. In no case does the ligand rotate freely within the cavity. The walls of the cavity consist predominantly of hydrocarbon atoms, and in several cases it appears that van der Waals interactions define the geometry of binding. In comparing the smallest with the largest ligand, the cavity volume increases from 181 A(3) to 245 A(3). This shows that the protein is flexible and adapts to the size and shape of the ligand. There is a remarkably close contact of 3.0 A between the iodine atom on C(6)F(5)I and the sulfur or selenium atom of Met or SeMet102. This interaction is 1.0 A less than the sum of the van der Waals radii and is a clear example of a so-called halogen bond. Notwithstanding this close approach, the increase in binding energy for the halogen bond relative to a van der Waals contact is estimated to be only about 0.5-0.7 kcal/mol.

Halogenated benzenes bound within a non-polar cavity in T4 lysozyme provide examples of I...S and I...Se halogen-bonding.,Liu L, Baase WA, Matthews BW J Mol Biol. 2009 Jan 16;385(2):595-605. Epub 2008 Nov 6. PMID:19014950[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
  2. Liu L, Baase WA, Matthews BW. Halogenated benzenes bound within a non-polar cavity in T4 lysozyme provide examples of I...S and I...Se halogen-bonding. J Mol Biol. 2009 Jan 16;385(2):595-605. Epub 2008 Nov 6. PMID:19014950 doi:10.1016/j.jmb.2008.10.086

Contents


PDB ID 3dn2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools