3h8a
From Proteopedia
Crystal structure of E. coli enolase bound to its cognate RNase E recognition domain
Structural highlights
FunctionENO_ECOLI Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. It is also a component of the RNA degradosome, a multi-enzyme complex involved in RNA processing and messenger RNA degradation. Its interaction with RNase E is important for the turnover of mRNA, in particular on transcripts encoding enzymes of energy-generating metabolic routes. Its presence in the degradosome is required for the response to excess phosphosugar. May play a regulatory role in the degradation of specific RNAs, such as ptsG mRNA, therefore linking cellular metabolic status with post-translational gene regulation.[1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn Escherichia coli and many other bacterial species, the glycolytic enzyme enolase is a component of the multi-enzyme RNA degradosome, an assembly that is involved in RNA processing and degradation. Enolase is recruited into the degradosome through interactions with a small recognition motif located within the degradosome-scaffolding domain of RNase E. Here, the crystal structure of enolase bound to its cognate site from RNase E (residues 823-850) at 1.9 A resolution is presented. The structure suggests that enolase may help to organize an adjacent conserved RNA-binding motif in RNase E. Molecular recognition between Escherichia coli enolase and ribonuclease E.,Nurmohamed S, McKay AR, Robinson CV, Luisi BF Acta Crystallogr D Biol Crystallogr. 2010 Sep;66(Pt 9):1036-40. Epub 2010 Aug 13. PMID:20823555[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 3 reviews cite this structure No citations found See AlsoReferences
|
|