| Structural highlights
Disease
HLAB_HUMAN Prediction of allopurinol toxicity;NON RARE IN EUROPE: Ankylosing spondylitis;Prediction of flucloxacilline toxicity;Giant cell arteritis;Takayasu arteritis;Reactive arthritis;Behcet disease;Stevens-Johnson syndrome;Prediction of phenytoin or carbamazepine toxicity;Pulmonary arterial hypertension associated with connective tissue disease;Prediction of abacavir toxicity. Disease susceptibility is associated with variants affecting the gene represented in this entry. Increased susceptibility to Stevens-Johnson syndrome is conferred by allele B*15:02.[1] Disease susceptibility is associated with variants affecting the gene represented in this entry. A restricted number of HLA-B*27 subtypes can be associated with ankylosing spondylitis and other B*27-related diseases, and an elevated frequency of the B*27:02 allele in ankylosing spondylitis patients is identified. The allele B*27:07 seems to have a protective role in some populations because it was found only in the healthy controls.[2] There is evidence that HLA-B*51 is associated with susceptibility to Behcet disease (BD). However, it is not certain whether HLA-B*51 itself or a closely linked gene is responsible for susceptibility. The world distribution of HLA-B*51 in healthy people corresponds to the global distribution of BD; in Southern hemisphere countries (Africa, South Pacific, etc.) and in some parts of Europe, the prevalence of HLA-B*51 in healthy people is low or null, corresponding to a low prevalence of BD. The wide variation that exists in the relative risk of HLA-B*51 would support other nongenetic risk factors.[3] The presence of allele B*57:01 is associated with increased susceptibility to abacavir hypersensitivity [MIM:142830 in HIV-1 patients.[4] Allele group B*08 is associated with increased susceptibility to rheumatoid arthritis, where affected individuals have antibodies to cyclic citrullinated peptide (anti-CCP-positive rheumatoid arthritis).[5]
Function
HLAB_HUMAN Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-B-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:25808313, PubMed:29531227, PubMed:9620674, PubMed:23209413). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:7743181, PubMed:18991276). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:29531227, PubMed:9620674, PubMed:24600035). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via constitutive proteasome and IFNG-induced immunoproteasome (PubMed:23209413). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:25808313, PubMed:29531227).[6] [7] [8] [9] [10] [11] [12] Allele B*07:02: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and mainly a Leu anchor residue at the C-terminus (PubMed:7743181). Presents a long peptide (APRGPHGGAASGL) derived from the cancer-testis antigen CTAG1A/NY-ESO-1, eliciting a polyclonal CD8-positive T cell response against tumor cells (PubMed:29531227). Presents viral epitopes derived from HIV-1 gag-pol (TPQDLNTML) and Nef (RPQVPLRPM) (PubMed:25808313). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (SPRWYFYYL) (PubMed:32887977). Displays self-peptides including a peptide derived from the signal sequence of HLA-DPB1 (APRTVALTA) (PubMed:7743181).[13] [14] [15] [16] Allele B*08:01: Presents to CD8-positive T cells viral epitopes derived from EBV/HHV-4 EBNA3 (QAKWRLQTL), eliciting cytotoxic T cell response.[17] Allele B*13:02: Presents multiple HIV-1 epitopes derived from gag (RQANFLGKI, GQMREPRGSDI), nef (RQDILDLWI), gag-pol (RQYDQILIE, GQGQWTYQI) and rev (LQLPPLERL), all having in common a Gln residue at position 2 and mainly hydrophobic amino acids Leu, Ile or Val at the C-terminus. Associated with succesful control of HIV-1 infection.[18] Allele B*18:01: Preferentially presents octomeric and nonameric peptides sharing a common motif, namely a Glu at position 2 and Phe or Tyr anchor residues at the C-terminus (PubMed:14978097, PubMed:23749632, PubMed:18991276). Presents an EBV/HHV-4 epitope derived from BZLF1 (SELEIKRY) (PubMed:23749632). May present to CD8-positive T cells an antigenic peptide derived from MAGEA3 (MEVDPIGHLY), triggering an anti-tumor immune response (PubMed:12366779). May display a broad repertoire of self-peptides with a preference for peptides derived from RNA-binding proteins (PubMed:14978097).[19] [20] [21] [22] Allele B*27:05: Presents to CD8-positive T cells immunodominant viral epitopes derived from HCV POLG (ARMILMTHF), HIV-1 gag (KRWIILGLNK), IAV NP (SRYWAIRTR), SARS-CoV-2 N/nucleoprotein (QRNAPRITF), EBV/HHV-4 EBNA4 (HRCQAIRKK) and EBV/HHV-4 EBNA6 (RRIYDLIEL), confering longterm protection against viral infection (PubMed:19139562, PubMed:18385228, PubMed:15113903, PubMed:9620674, PubMed:32887977). Can present self-peptides derived from cytosolic and nuclear proteins. All peptides carry an Arg at position 2 (PubMed:1922338). The peptide-bound form interacts with NK cell inhibitory receptor KIR3DL1 and inhibits NK cell activation in a peptide-specific way, being particularly sensitive to the nature of the amino acid side chain at position 8 of the antigenic peptide (PubMed:8879234, PubMed:15657948). KIR3DL1 fails to recognize HLA-B*27:05 in complex with B2M and EBV/HHV-4 EBNA6 (RRIYDLIEL) peptide, which can lead to increased activation of NK cells during infection (PubMed:15657948). May present an altered repertoire of peptides in the absence of TAP1-TAP2 and TAPBPL (PubMed:9620674).[23] [24] [25] [26] [27] [28] [29] Allele B*40:01: Presents immunodominant viral epitopes derived from EBV/HHV-4 LMP2 (IEDPPFNSL) and SARS-CoV-2 N/nucleoprotein (MEVTPSGTWL), triggering memory CD8-positive T cell response (PubMed:18991276, PubMed:32887977). Displays self-peptides sharing a signature motif, namely a Glu at position 2 and a Leu anchor residue at the C-terminus (PubMed:18991276).[30] [31] Allele B*41:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ala or Pro anchor residues at the C-terminus.[32] Allele B*44:02: Presents immunodominant viral epitopes derived from EBV/HHV-4 EBNA4 (VEITPYKPTW) and EBNA6 (AEGGVGWRHW, EENLLDFVRF), triggering memory CD8-positive T cell response (PubMed:9620674, PubMed:18991276). Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Phe, Tyr or Trp anchor residues at the C-terminus (PubMed:18991276).[33] [34] Allele B*45:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ala or Pro anchor residues at the C-terminus.[35] Allele B*46:01: Preferentially presents nonameric peptides sharing a signature motif, namely Ala and Leu at position 2 and Tyr, Phe, Leu, or Met anchor residues at the C-terminus. The peptide-bound form interacts with KIR2DL3 and inhibits NK cell cytotoxic response in a peptide-specific way.[36] Allele B*47:01: Displays self-peptides sharing a signature motif, namely an Asp at position 2 and Leu or Met anchor residues at the C-terminus.[37] Allele B*49:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ile or Val anchor residues at the C-terminus.[38] Allele B*50:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ala or Pro anchor residues at the C-terminus.[39] Allele B*51:01: Presents an octomeric HIV-1 epitope derived from gag-pol (TAFTIPSI) to the public TRAV17/TRBV7-3 TCR clonotype, strongly suppressing HIV-1 replication.[40] Allele B*54:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Ala anchor residue at the C-terminus.[41] Allele B*55:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Ala anchor residue at the C-terminus.[42] Allele B*56:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Ala anchor residue at the C-terminus.[43] Allele B*57:01: The peptide-bound form recognizes KIR3DL1 and inhibits NK cell cytotoxic response.[44] [45] Allele B*67:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Leu anchor residue at the C-terminus.[46]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Preexisting T-cell immunity directed at conserved viral regions promotes enhanced recovery from influenza virus infections, with there being some evidence of cross-protection directed at variable peptides. Strikingly, many of the immunogenic peptides derived from the current pandemic A(H1N1)-2009 influenza virus are representative of the catastrophic 1918 "Spanish flu" rather than more recent "seasonal" strains. We present immunological and structural analyses of cross-reactive CD8(+) T-cell-mediated immunity directed at a variable (although highly cross-reactive) immunodominant NP(418-426) peptide that binds to a large B7 family (HLA-B*3501/03/0702) found throughout human populations. Memory CD8(+) T-cell specificity was probed for 12 different NP(418) mutants that emerged over the 9 decades between the 1918 and 2009 pandemics. Although there is evidence of substantial cross-reactivity among seasonal NP(418) mutants, current memory T-cell profiles show no preexisting immunity to the 2009-NP(418) variant or the 1918-NP(418) variant. Natural infection with the A(H1N1)-2009 virus, however, elicits CD8(+) T cells specific for the 2009-NP(418) and 1918-NP(418) epitopes. This analysis points to the potential importance of cross-reactive T-cell populations that cover the possible spectrum of T-cell variants and suggests that the identification of key residues/motifs that elicit cross-reactive T-cell sets could facilitate the evolution of immunization protocols that provide a measure of protection against unpredicted pandemic influenza viruses. Thus, it is worth exploring the potential of vaccines that incorporate peptide variants with a proven potential for broader immunogenicity, especially to those that are not recognized by the current memory T-cell pool generated by exposure to influenza variants that cause successive seasonal epidemics.
Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses.,Gras S, Kedzierski L, Valkenburg SA, Laurie K, Liu YC, Denholm JT, Richards MJ, Rimmelzwaan GF, Kelso A, Doherty PC, Turner SJ, Rossjohn J, Kedzierska K Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12599-604. Epub 2010 Jun 28. PMID:20616031[47]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004 Apr 1;428(6982):486. doi: 10.1038/428486a. PMID:15057820 doi:http://dx.doi.org/10.1038/428486a
- ↑ Varnavidou-Nicolaidou A, Karpasitou K, Georgiou D, Stylianou G, Kokkofitou A, Michalis C, Constantina C, Gregoriadou C, Kyriakides G. HLA-B27 in the Greek Cypriot population: distribution of subtypes in patients with ankylosing spondylitis and other HLA-B27-related diseases. The possible protective role of B*2707. Hum Immunol. 2004 Dec;65(12):1451-4. PMID:15603872 doi:10.1016/j.humimm.2004.08.177
- ↑ Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, Ozyazgan Y, Sacli FS, Erer B, Inoko H, Emrence Z, Cakar A, Abaci N, Ustek D, Satorius C, Ueda A, Takeno M, Kim Y, Wood GM, Ombrello MJ, Meguro A, Gul A, Remmers EF, Kastner DL. Genome-wide association analysis identifies new susceptibility loci for Behcet's disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013 Feb;45(2):202-7. doi: 10.1038/ng.2520. Epub 2013 Jan 6. PMID:23291587 doi:http://dx.doi.org/10.1038/ng.2520
- ↑ Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, Sayer D, Castley A, Mamotte C, Maxwell D, James I, Christiansen FT. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002 Mar 2;359(9308):727-32. doi: 10.1016/s0140-6736(02)07873-x. PMID:11888582 doi:http://dx.doi.org/10.1016/s0140-6736(02)07873-x
- ↑ Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, Alfredsson L, Padyukov L, Klareskog L, Worthington J, Siminovitch KA, Bae SC, Plenge RM, Gregersen PK, de Bakker PI. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012 Jan 29;44(3):291-6. doi: 10.1038/ng.1076. PMID:22286218 doi:http://dx.doi.org/10.1038/ng.1076
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Schmidt J, Iversen AK, Tenzer S, Gostick E, Price DA, Lohmann V, Distler U, Bowness P, Schild H, Blum HE, Klenerman P, Neumann-Haefelin C, Thimme R. Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog. 2012;8(11):e1003042. doi: 10.1371/journal.ppat.1003042. Epub 2012, Nov 29. PMID:23209413 doi:http://dx.doi.org/10.1371/journal.ppat.1003042
- ↑ Motozono C, Kuse N, Sun X, Rizkallah PJ, Fuller A, Oka S, Cole DK, Sewell AK, Takiguchi M. Molecular basis of a dominant T cell response to an HIV reverse transcriptase 8-mer epitope presented by the protective allele HLA-B*51:01. J Immunol. 2014 Apr 1;192(7):3428-34. doi: 10.4049/jimmunol.1302667. Epub 2014, Mar 5. PMID:24600035 doi:http://dx.doi.org/10.4049/jimmunol.1302667
- ↑ Kloverpris HN, Cole DK, Fuller A, Carlson J, Beck K, Schauenburg AJ, Rizkallah PJ, Buus S, Sewell AK, Goulder P. A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape. Retrovirology. 2015 Feb 20;12(1):20. doi: 10.1186/s12977-015-0149-5. PMID:25808313 doi:http://dx.doi.org/10.1186/s12977-015-0149-5
- ↑ Chan KF, Gully BS, Gras S, Beringer DX, Kjer-Nielsen L, Cebon J, McCluskey J, Chen W, Rossjohn J. Divergent T-cell receptor recognition modes of a HLA-I restricted extended tumour-associated peptide. Nat Commun. 2018 Mar 12;9(1):1026. doi: 10.1038/s41467-018-03321-w. PMID:29531227 doi:http://dx.doi.org/10.1038/s41467-018-03321-w
- ↑ Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179-90. doi: 10.1016/s0960-9822(95)00039-x. PMID:7743181 doi:http://dx.doi.org/10.1016/s0960-9822(95)00039-x
- ↑ Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, Moss DJ, McCluskey J. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998 May;8(5):531-42. doi: 10.1016/s1074-7613(00)80558-0. PMID:9620674 doi:http://dx.doi.org/10.1016/s1074-7613(00)80558-0
- ↑ Kloverpris HN, Cole DK, Fuller A, Carlson J, Beck K, Schauenburg AJ, Rizkallah PJ, Buus S, Sewell AK, Goulder P. A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape. Retrovirology. 2015 Feb 20;12(1):20. doi: 10.1186/s12977-015-0149-5. PMID:25808313 doi:http://dx.doi.org/10.1186/s12977-015-0149-5
- ↑ Chan KF, Gully BS, Gras S, Beringer DX, Kjer-Nielsen L, Cebon J, McCluskey J, Chen W, Rossjohn J. Divergent T-cell receptor recognition modes of a HLA-I restricted extended tumour-associated peptide. Nat Commun. 2018 Mar 12;9(1):1026. doi: 10.1038/s41467-018-03321-w. PMID:29531227 doi:http://dx.doi.org/10.1038/s41467-018-03321-w
- ↑ Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C, Lopez-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield OW, Hawkins DEDP, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J, Simmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openshaw PJM, Ansari MA, Dunachie S, Barnes E, Frater J, Kerr G, Goulder P, Lockett T, Levin R, Zhang Y, Jing R, Ho LP, Cornall RJ, Conlon CP, Klenerman P, Screaton GR, Mongkolsapaya J, McMichael A, Knight JC, Ogg G, Dong T. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020 Nov;21(11):1336-1345. doi: 10.1038/s41590-020-0782-6. Epub 2020, Sep 4. PMID:32887977 doi:http://dx.doi.org/10.1038/s41590-020-0782-6
- ↑ Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179-90. doi: 10.1016/s0960-9822(95)00039-x. PMID:7743181 doi:http://dx.doi.org/10.1016/s0960-9822(95)00039-x
- ↑ Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, Moss DJ, McCluskey J. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998 May;8(5):531-42. doi: 10.1016/s1074-7613(00)80558-0. PMID:9620674 doi:http://dx.doi.org/10.1016/s1074-7613(00)80558-0
- ↑ Honeyborne I, Prendergast A, Pereyra F, Leslie A, Crawford H, Payne R, Reddy S, Bishop K, Moodley E, Nair K, van der Stok M, McCarthy N, Rousseau CM, Addo M, Mullins JI, Brander C, Kiepiela P, Walker BD, Goulder PJ. Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8+ T-cell epitopes. J Virol. 2007 Apr;81(7):3667-72. doi: 10.1128/JVI.02689-06. Epub 2007 Jan 24. PMID:17251285 doi:http://dx.doi.org/10.1128/JVI.02689-06
- ↑ Bilsborough J, Panichelli C, Duffour MT, Warnier G, Lurquin C, Schultz ES, Thielemans K, Corthals J, Boon T, van der Bruggen P. A MAGE-3 peptide presented by HLA-B44 is also recognized by cytolytic T lymphocytes on HLA-B18. Tissue Antigens. 2002 Jul;60(1):16-24. doi: 10.1034/j.1399-0039.2002.600103.x. PMID:12366779 doi:http://dx.doi.org/10.1034/j.1399-0039.2002.600103.x
- ↑ Hickman HD, Luis AD, Buchli R, Few SR, Sathiamurthy M, VanGundy RS, Giberson CF, Hildebrand WH. Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J Immunol. 2004 Mar 1;172(5):2944-52. doi: 10.4049/jimmunol.172.5.2944. PMID:14978097 doi:http://dx.doi.org/10.4049/jimmunol.172.5.2944
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Rist MJ, Theodossis A, Croft NP, Neller MA, Welland A, Chen Z, Sullivan LC, Burrows JM, Miles JJ, Brennan RM, Gras S, Khanna R, Brooks AG, McCluskey J, Purcell AW, Rossjohn J, Burrows SR. HLA Peptide Length Preferences Control CD8+ T Cell Responses. J Immunol. 2013 Jun 7. PMID:23749632 doi:10.4049/jimmunol.1300292
- ↑ Berkhoff EG, Boon AC, Nieuwkoop NJ, Fouchier RA, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF. A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro. J Virol. 2004 May;78(10):5216-22. doi: 10.1128/jvi.78.10.5216-5222.2004. PMID:15113903 doi:http://dx.doi.org/10.1128/jvi.78.10.5216-5222.2004
- ↑ Stewart-Jones GB, di Gleria K, Kollnberger S, McMichael AJ, Jones EY, Bowness P. Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B*2705. Eur J Immunol. 2005 Feb;35(2):341-51. PMID:15657948 doi:10.1002/eji.200425724
- ↑ Schneidewind A, Brockman MA, Sidney J, Wang YE, Chen H, Suscovich TJ, Li B, Adam RI, Allgaier RL, Mothe BR, Kuntzen T, Oniangue-Ndza C, Trocha A, Yu XG, Brander C, Sette A, Walker BD, Allen TM. Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. J Virol. 2008 Jun;82(11):5594-605. doi: 10.1128/JVI.02356-07. Epub 2008 Apr 2. PMID:18385228 doi:http://dx.doi.org/10.1128/JVI.02356-07
- ↑ Dazert E, Neumann-Haefelin C, Bressanelli S, Fitzmaurice K, Kort J, Timm J, McKiernan S, Kelleher D, Gruener N, Tavis JE, Rosen HR, Shaw J, Bowness P, Blum HE, Klenerman P, Bartenschlager R, Thimme R. Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J Clin Invest. 2009 Feb;119(2):376-86. doi: 10.1172/JCI36587. Epub 2009 Jan 12. PMID:19139562 doi:http://dx.doi.org/10.1172/JCI36587
- ↑ Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326-9. doi: 10.1038/353326a0. PMID:1922338 doi:http://dx.doi.org/10.1038/353326a0
- ↑ Peruzzi M, Wagtmann N, Long EO. A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to HLA-B*2705. J Exp Med. 1996 Oct 1;184(4):1585-90. doi: 10.1084/jem.184.4.1585. PMID:8879234 doi:http://dx.doi.org/10.1084/jem.184.4.1585
- ↑ Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, Moss DJ, McCluskey J. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998 May;8(5):531-42. doi: 10.1016/s1074-7613(00)80558-0. PMID:9620674 doi:http://dx.doi.org/10.1016/s1074-7613(00)80558-0
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C, Lopez-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield OW, Hawkins DEDP, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J, Simmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openshaw PJM, Ansari MA, Dunachie S, Barnes E, Frater J, Kerr G, Goulder P, Lockett T, Levin R, Zhang Y, Jing R, Ho LP, Cornall RJ, Conlon CP, Klenerman P, Screaton GR, Mongkolsapaya J, McMichael A, Knight JC, Ogg G, Dong T. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020 Nov;21(11):1336-1345. doi: 10.1038/s41590-020-0782-6. Epub 2020, Sep 4. PMID:32887977 doi:http://dx.doi.org/10.1038/s41590-020-0782-6
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, Moss DJ, McCluskey J. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998 May;8(5):531-42. doi: 10.1016/s1074-7613(00)80558-0. PMID:9620674 doi:http://dx.doi.org/10.1016/s1074-7613(00)80558-0
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Hilton HG, McMurtrey CP, Han AS, Djaoud Z, Guethlein LA, Blokhuis JH, Pugh JL, Goyos A, Horowitz A, Buchli R, Jackson KW, Bardet W, Bushnell DA, Robinson PJ, Mendoza JL, Birnbaum ME, Nielsen M, Garcia KC, Hildebrand WH, Parham P. The Intergenic Recombinant HLA-B *46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Rep. 2017 May 16;19(7):1394-1405. doi: 10.1016/j.celrep.2017.04.059. PMID:28514659 doi:http://dx.doi.org/10.1016/j.celrep.2017.04.059
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Hillen N, Mester G, Lemmel C, Weinzierl AO, Muller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanovic S. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol. 2008 Nov;38(11):2993-3003. doi: 10.1002/eji.200838632. PMID:18991276 doi:http://dx.doi.org/10.1002/eji.200838632
- ↑ Motozono C, Kuse N, Sun X, Rizkallah PJ, Fuller A, Oka S, Cole DK, Sewell AK, Takiguchi M. Molecular basis of a dominant T cell response to an HIV reverse transcriptase 8-mer epitope presented by the protective allele HLA-B*51:01. J Immunol. 2014 Apr 1;192(7):3428-34. doi: 10.4049/jimmunol.1302667. Epub 2014, Mar 5. PMID:24600035 doi:http://dx.doi.org/10.4049/jimmunol.1302667
- ↑ Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179-90. doi: 10.1016/s0960-9822(95)00039-x. PMID:7743181 doi:http://dx.doi.org/10.1016/s0960-9822(95)00039-x
- ↑ Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179-90. doi: 10.1016/s0960-9822(95)00039-x. PMID:7743181 doi:http://dx.doi.org/10.1016/s0960-9822(95)00039-x
- ↑ Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179-90. doi: 10.1016/s0960-9822(95)00039-x. PMID:7743181 doi:http://dx.doi.org/10.1016/s0960-9822(95)00039-x
- ↑ Vivian JP, Duncan RC, Berry R, O'Connor GM, Reid HH, Beddoe T, Gras S, Saunders PM, Olshina MA, Widjaja JM, Harpur CM, Lin J, Maloveste SM, Price DA, Lafont BA, McVicar DW, Clements CS, Brooks AG, Rossjohn J. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature. 2011 Oct 23;479(7373):401-5. doi: 10.1038/nature10517. PMID:22020283 doi:10.1038/nature10517
- ↑ Saunders PM, Vivian JP, Baschuk N, Beddoe T, Widjaja J, O'Connor GM, Hitchen C, Pymm P, Andrews DM, Gras S, McVicar DW, Rossjohn J, Brooks AG. The Interaction of KIR3DL1*001 with HLA Class I Molecules Is Dependent upon Molecular Microarchitecture within the Bw4 Epitope. J Immunol. 2014 Dec 5. pii: 1402542. PMID:25480565 doi:http://dx.doi.org/10.4049/jimmunol.1402542
- ↑ Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179-90. doi: 10.1016/s0960-9822(95)00039-x. PMID:7743181 doi:http://dx.doi.org/10.1016/s0960-9822(95)00039-x
- ↑ Gras S, Kedzierski L, Valkenburg SA, Laurie K, Liu YC, Denholm JT, Richards MJ, Rimmelzwaan GF, Kelso A, Doherty PC, Turner SJ, Rossjohn J, Kedzierska K. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12599-604. Epub 2010 Jun 28. PMID:20616031
|