3o41
From Proteopedia
Crystal Structure of 101F Fab Bound to 15-mer Peptide Epitope
Structural highlights
FunctionFUS_HRSVA Class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and plasma cell membrane fusion, the heptad repeat (HR) regions assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and plasma cell membranes. Directs fusion of viral and cellular membranes leading to delivery of the nucleocapsid into the cytoplasm. This fusion is pH independent and occurs directly at the outer cell membrane. The trimer of F1-F2 (protein F) interacts with glycoprotein G at the virion surface. Upon binding of G to heparan sulfate, the hydrophobic fusion peptide is unmasked and interacts with the cellular membrane, inducing the fusion between host cell and virion membranes. Notably, RSV fusion protein is able to interact directly with heparan sulfate and therefore actively participates in virus attachment. Furthermore, the F2 subunit was identifed as the major determinant of RSV host cell specificity. Later in infection, proteins F expressed at the plasma membrane of infected cells mediate fusion with adjacent cells to form syncytia, a cytopathic effect that could lead to tissue necrosis. The fusion protein is also able to trigger p53-dependent apoptosis.[1] [2] Publication Abstract from PubMedRespiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody-escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface-plasmon resonance experiments that demonstrated 101F bound the peptide epitope approximately 16,000 fold weaker than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or post-fusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein. Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F.,McLellan JS, Chen M, Chang JS, Yang Y, Kim A, Graham BS, Kwong PD J Virol. 2010 Sep 29. PMID:20881049[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|