3tnp

From Proteopedia

Jump to: navigation, search

Structure and Allostery of the PKA RIIb Tetrameric Holoenzyme

Structural highlights

3tnp is a 4 chain structure with sequence from Mus musculus. The August 2012 RCSB PDB Molecule of the Month feature on cAMP-dependent Protein Kinase (PKA) by David Goodsell is 10.2210/rcsb_pdb/mom_2012_8. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:SEP, TPO
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAPCA_MOUSE Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). TRPC1 activation by phosphorylation promotes Ca(2+) influx, essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Regulates negatively tight junction (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Isoform 2 phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT).[1] [2] [3]

Publication Abstract from PubMed

In its physiological state, cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIbeta(2):C(2) holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the beta4-beta5 loop in the RIIbeta subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIbeta subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIbeta tetramer differs appreciably from our model of the RIalpha tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.

Structure and allostery of the PKA RIIbeta tetrameric holoenzyme.,Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS Science. 2012 Feb 10;335(6069):712-6. PMID:22323819[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13483-8. Epub 2004 Aug 31. PMID:15340140 doi:10.1073/pnas.0405580101
  2. Pirino G, Wescott MP, Donovan PJ. Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle. 2009 Feb 15;8(4):665-70. Epub 2009 Feb 14. PMID:19223768
  3. Baker MA, Hetherington L, Curry B, Aitken RJ. Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol. 2009 Sep 1;333(1):57-66. doi: 10.1016/j.ydbio.2009.06.022. Epub 2009, Jun 26. PMID:19560455 doi:10.1016/j.ydbio.2009.06.022
  4. Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS. Structure and allostery of the PKA RIIbeta tetrameric holoenzyme. Science. 2012 Feb 10;335(6069):712-6. PMID:22323819 doi:http://dx.doi.org/10.1126/science.1213979

Contents


PDB ID 3tnp

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools