3wai

From Proteopedia

Jump to: navigation, search

Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (AfAglB-L, O29867_ARCFU) from Archaeoglobus fulgidus as a MBP fusion

Structural highlights

3wai is a 1 chain structure with sequence from Archaeoglobus fulgidus DSM 4304 and Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.897Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MALE_ECOLI Involved in the high-affinity maltose membrane transport system MalEFGK. Initial receptor for the active transport of and chemotaxis toward maltooligosaccharides.AGLB3_ARCFU Oligosaccharyl transferase (OST) that catalyzes the initial transfer of a defined glycan (a glucose-linked heptasaccharide composed of 3 Glc, 2 Man, 2 Gal and a sulfate for A.fulgidus AglB-L) from the lipid carrier dolichol-monophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation.[1] [2] [3]

Publication Abstract from PubMed

BACKGROUND: Protein N-glycosylation occurs in the three domains of life. Oligosaccharyltransferase (OST) transfers an oligosaccharide chain to the asparagine residue in the N-glycosylation sequons. The catalytic subunits of the OST enzyme are STT3 in eukaryotes, AglB in archaea and PglB in eubacteria. The genome of a hyperthermophilic archaeon, Archaeoglobus fulgidus, encodes three paralogous AglB proteins. We previously solved the crystal structures of the C-terminal globular domains of two paralogs, AglB-Short 1 and AglB-Short 2. RESULTS: We determined the crystal structure of the C-terminal globular domain of the third AglB paralog, AglB-Long, at 1.9 A resolutions. The crystallization of the fusion protein with maltose binding protein (MBP) afforded high quality protein crystals. Two MBP-AglB-L molecules formed a swapped dimer in the crystal. Since the fusion protein behaved as a monomer upon gel filtration, we reconstituted the monomer structure from the swapped dimer by exchanging the swapped segments. The C-terminal domain of A. fulgidus AglB-L includes a structural unit common to AglB-S1 and AglB-S2. This structural unit contains the evolutionally conserved WWDYG and DK motifs. The present structure revealed that A. fulgidus AglB-L contained a variant type of the DK motif with a short insertion, and confirmed that the second signature residue, Lys, of the DK motif participates in the formation of a pocket that binds to the serine and threonine residues at the +2 position of the N-glycosylation sequon. CONCLUSIONS: The structure of A. fulgidus AglB-L, together with the two previously solved structures of AglB-S1 and AglB-S2, provides a complete overview of the three AglB paralogs encoded in the A. fulgidus genome. All three AglBs contain a variant type of the DK motif. This finding supports a previously proposed rule: The STT3/AglB/PglB paralogs in one organism always contain the same type of Ser/Thr-binding pocket. The present structure will be useful as a search model for molecular replacement in the structural determination of the full-length A. fulgidus AglB-L.

Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases.,Matsumoto S, Shimada A, Kohda D BMC Struct Biol. 2013 Jul 1;13(1):11. PMID:23815857[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Matsumoto S, Shimada A, Nyirenda J, Igura M, Kawano Y, Kohda D. Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Proc Natl Acad Sci U S A. 2013 Oct 14. PMID:24127570 doi:http://dx.doi.org/10.1073/pnas.1309777110
  2. Taguchi Y, Fujinami D, Kohda D. Comparative Analysis of Archaeal Lipid-linked Oligosaccharides That Serve as Oligosaccharide Donors for Asn Glycosylation. J Biol Chem. 2016 May 20;291(21):11042-54. PMID:27015803 doi:10.1074/jbc.M115.713156
  3. Matsumoto S, Taguchi Y, Shimada A, Igura M, Kohda D. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex. Biochemistry. 2017 Jan 31;56(4):602-611. doi: 10.1021/acs.biochem.6b01089. Epub, 2017 Jan 17. PMID:27997792 doi:http://dx.doi.org/10.1021/acs.biochem.6b01089
  4. Matsumoto S, Shimada A, Kohda D. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases. BMC Struct Biol. 2013 Jul 1;13(1):11. PMID:23815857 doi:10.1186/1472-6807-13-11

Contents


PDB ID 3wai

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools