3zvg
From Proteopedia
3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 98
Structural highlights
FunctionA1E4A3_HED68 Acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU (By similarity). The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome (By similarity). Following genome release from the infecting virion in the cytoplasm, the VPg-RNA linkage is probably removed by host TDP2 (By similarity). During the late stage of the replication cycle, host TDP2 is excluded from sites of viral RNA synthesis and encapsidation, allowing for the generation of progeny virions.[ARBA:ARBA00024846] Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step.[RuleBase:RU364118] Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host cell receptor to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks.[RuleBase:RU364118] Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome.[RuleBase:RU364118] Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome.[RuleBase:RU364118] Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm.[RuleBase:RU364118] Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation (By similarity). Allows the capsid to remain inactive before the maturation step.[ARBA:ARBA00025202] Protease 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins.[RuleBase:RU364118] Protease 3C: Major viral protease that mediates proteolytic processing of the polyprotein. Cleaves host EIF5B, contributing to host translation shutoff. Cleaves also host PABPC1, contributing to host translation shutoff.[RuleBase:RU364118] Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cytoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication.[RuleBase:RU364118] Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3.[RuleBase:RU364118] Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the disassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface.[RuleBase:RU364118] Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity.[RuleBase:RU364118] Protein 3CD: Involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. Protein 3CD binds to the 5'UTR of the viral genome.[RuleBase:RU364118] RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated.[RuleBase:RU364118] Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome.[RuleBase:RU364118] Publication Abstract from PubMedWe have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2 as well as to that of poliovirus. The phylogenetic position of the EV68 3C(pro) between the corresponding enzymes of rhinoviruses on the one hand and enteroviruses on the other prompted us to use the crystal structure for the design of irreversible inhibitors, with the goal of discovering broad-spectrum antiviral compounds. We synthesized a series of peptidic alpha,beta-unsaturated ethyl esters of increasing length and for each inhibitor candidate, we determined a crystal structure of its complex with the EV68 3C(pro), which served as the basis for the next design round. To exhibit inhibitory activity, compounds must span at least P3 to P1' ; the most potent inhibitors comprise P4 to P1' . Inhibitory activities were found against the purified 3C protease of EV68 as well as with replicons for poliovirus and EV71 (EC(50) = 0.5 muM for the best compound). Antiviral activities were determined using cell cultures infected with EV71, poliovirus, echovirus 11, and various rhinovirus serotypes. The most potent inhibitor, SG85, exhibited activity with EC(50) values of approximately 180 nM against EV71 and approximately 60 nM against human rhinovirus 14 in a live virus-cell-based assay. Even the shorter SG75, spanning only P3 to P1' , displayed significant activity (EC(50) = 2 to 5 muM) against various rhinoviruses. 3C protease of enterovirus 68: Structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses.,Tan J, George S, Kusov Y, Perbandt M, Anemuller S, Mesters JR, Norder H, Coutard B, Lacroix C, Leyssen P, Neyts J, Hilgenfeld R J Virol. 2013 Feb 6. PMID:23388726[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|