| Structural highlights
Function
COLH_HATHI Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). The full-length protein has collagenase activity, while both the 116 kDa and 98 kDa forms act on gelatin (PubMed:7961400). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain is also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). Digestion of collagen requires Ca(2+) and is inhibited by EDTA (PubMed:9452493). The activator domain (residues 119-388) and catalytic subdomain (330-601) open and close around substrate allowing digestion when the protein is closed (PubMed:23703618).[1] [2] [3] [4] [5] [6] [7] [8] [9]
Publication Abstract from PubMed
Clostridial collagenases are among the most efficient enzymes to degrade by far the most predominant protein in the biosphere. Here we present crystal structures of the peptidases of three clostridial collagenase isoforms (ColG, ColH and ColT). The comparison of unliganded and liganded structures reveal a quaternary subdomain dynamics. In the unliganded ColH structure this globular dynamics is modulated by an aspartate switch motion that binds to the catalytic zinc. We further identified a calcium binding site in proximity to the catalytic zinc. Both ions are required for full activity, explaining why calcium critically affects the enzymatic activity of clostridial collagenases. Our studies further reveal that loops close to the active site thus serve as characteristic substrate selectivity filter. These elements explain the distinct peptidolytic and collagenolytic activities of these enzymes and provide a rational to engineer collagenases with customized substrate specificity as well as for inhibitor design.
Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T.,Eckhard U, Schonauer E, Brandstetter H J Biol Chem. 2013 May 23. PMID:23703618[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ McCarthy RC, Spurlin B, Wright MJ, Breite AG, Sturdevant LK, Dwulet CS, Dwulet FE. Development and characterization of a collagen degradation assay to assess purified collagenase used in islet isolation. Transplant Proc. 2008 Mar;40(2):339-42. doi: 10.1016/j.transproceed.2008.01.041. PMID:18374061 doi:http://dx.doi.org/10.1016/j.transproceed.2008.01.041
- ↑ Eckhard U, Schonauer E, Ducka P, Briza P, Nuss D, Brandstetter H. Biochemical characterization of the catalytic domains of three different Clostridial collagenases. Biol Chem. 2009 Jan;390(1):11-8. doi: 10.1515/BC.2009.004. PMID:18937627 doi:http://dx.doi.org/10.1515/BC.2009.004
- ↑ Breite AG, McCarthy RC, Dwulet FE. Characterization and functional assessment of Clostridium histolyticum class I (C1) collagenases and the synergistic degradation of native collagen in enzyme mixtures containing class II (C2) collagenase. Transplant Proc. 2011 Nov;43(9):3171-5. doi: 10.1016/j.transproceed.2011.09.059. PMID:22099748 doi:http://dx.doi.org/10.1016/j.transproceed.2011.09.059
- ↑ Eckhard U, Schonauer E, Brandstetter H. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J Biol Chem. 2013 May 23. PMID:23703618 doi:10.1074/jbc.M112.448548
- ↑ Eckhard U, Huesgen PF, Brandstetter H, Overall CM. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen. J Proteomics. 2014 Apr 4;100:102-14. doi: 10.1016/j.jprot.2013.10.004. Epub 2013 , Oct 11. PMID:24125730 doi:http://dx.doi.org/10.1016/j.jprot.2013.10.004
- ↑ Schonauer E, Kany AM, Haupenthal J, Husecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsasser B, Ducho C, Brandstetter H, Hartmann RW. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases. J Am Chem Soc. 2017 Sep 13;139(36):12696-12703. doi: 10.1021/jacs.7b06935. Epub, 2017 Aug 31. PMID:28820255 doi:http://dx.doi.org/10.1021/jacs.7b06935
- ↑ Mookhtiar KA, Steinbrink DR, Van Wart HE. Mode of hydrolysis of collagen-like peptides by class I and class II Clostridium histolyticum collagenases: evidence for both endopeptidase and tripeptidylcarboxypeptidase activities. Biochemistry. 1985 Nov 5;24(23):6527-33. doi: 10.1021/bi00344a033. PMID:3002446 doi:http://dx.doi.org/10.1021/bi00344a033
- ↑ Yoshihara K, Matsushita O, Minami J, Okabe A. Cloning and nucleotide sequence analysis of the colH gene from Clostridium histolyticum encoding a collagenase and a gelatinase. J Bacteriol. 1994 Nov;176(21):6489-96. doi: 10.1128/jb.176.21.6489-6496.1994. PMID:7961400 doi:http://dx.doi.org/10.1128/jb.176.21.6489-6496.1994
- ↑ Matsushita O, Jung CM, Minami J, Katayama S, Nishi N, Okabe A. A study of the collagen-binding domain of a 116-kDa Clostridium histolyticum collagenase. J Biol Chem. 1998 Feb 6;273(6):3643-8. doi: 10.1074/jbc.273.6.3643. PMID:9452493 doi:http://dx.doi.org/10.1074/jbc.273.6.3643
- ↑ Eckhard U, Schonauer E, Brandstetter H. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J Biol Chem. 2013 May 23. PMID:23703618 doi:10.1074/jbc.M112.448548
|