4h8w

From Proteopedia

Jump to: navigation, search

Crystal structure of non-neutralizing and ADCC-potent antibody N5-i5 in complex with HIV-1 clade A/E gp120 and sCD4.

Structural highlights

4h8w is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.85Å
Ligands:GOL, MRD, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q0ED31_9HIV1 The envelope glyprotein gp160 precursor down-modulates cell surface CD4 antigen by interacting with it in the endoplasmic reticulum and blocking its transport to the cell surface (By similarity).[RuleBase:RU004292][SAAS:SAAS000328_004_020447] The gp120-gp41 heterodimer allows rapid transcytosis of the virus through CD4 negative cells such as simple epithelial monolayers of the intestinal, rectal and endocervical epithelial barriers. Both gp120 and gp41 specifically recognize glycosphingolipids galactosyl-ceramide (GalCer) or 3' sulfo-galactosyl-ceramide (GalS) present in the lipid rafts structures of epithelial cells. Binding to these alternative receptors allows the rapid transcytosis of the virus through the epithelial cells. This transcytotic vesicle-mediated transport of virions from the apical side to the basolateral side of the epithelial cells does not involve infection of the cells themselves (By similarity).

Publication Abstract from PubMed

The RV144 vaccine trial implicated epitopes in the C1 region of gp120 (A32-like epitopes) as targets of potentially protective antibody-dependent cellular cytotoxicity (ADCC) responses. A32-like epitopes are highly immunogenic as infected or vaccinated individuals frequently elicit antibodies specific for these determinants. Antibody-binding titers as measured by ELISA against these epitopes, however, do not consistently correlate with protection. Here, we report crystal structures of CD4-stabilized gp120 cores complexed with the Fab fragments of two non-neutralizing, A32-like monoclonal antibodies (mAbs), named N5-i5 and 2.2c, that compete for antigen binding and exhibit similar binding affinities, yet mediate a 75-fold difference in ADCC potency. We find that these mAbs recognize overlapping epitopes formed by mobile layers 1 and 2 of the gp120 inner domain including the C1-C2 regions, but bind gp120 at different angles via juxtaposed VH and VL contact surfaces. A comparison of structural and immunological data further showed that antibody orientation on bound antigen and the capacity to form multivalent antigen-antibody complexes on target cells were key determinants for ADCC potency, with the latter process having the greater impact. These studies provide atomic level definition of A32-like epitopes implicated as targets of protective antibodies in RV144. Moreover, these studies establish that epitope structure and mode of antibody binding can dramatically affect the potency of Fc-mediated effector function against HIV-1. These results provide key insights for understanding, refining, and improving the outcome of HIV-vaccine trials, in which relevant immune responses are facilitated by A32-like elicited responses. IMPORTANCE: HIV-1 Env is a primary target for antibodies elicited during infection. Although a small number of infected individuals elicit broadly neutralizing antibodies, the bulk of humoral response consists of antibodies that do not neutralize or do so with limited breadth but may effect protection through Fc receptor-dependent processes, such as antibody-dependent cellular cytotoxicity (ADCC). Understanding these non-neutralizing responses is an important aspect in elucidating the complete spectrum of immune response against HIV-1 infection. With this report we provide the first atomic level definition of non-neutralizing CD4-induced epitopes in the N-terminal region of the HIV-1 gp120 (A32-like epitopes). Further, our studies point toward the dominant role of precise epitope targeting and mode of antibody attachment in ADCC responses even when largely overlapping epitopes are involved. Such information provides key insights into the mechanisms of Fc-mediated antibody function to HIV-1 and helps understand the outcome of vaccine trials based on humoral immunity.

Structural Definition of an Antibody-Dependent Cellular Cytotoxicity (ADCC) Response Implicated in Reduced Risk for HIV-1 Infection.,Acharya P, Tolbert WD, Gohain N, Wu X, Yu L, Liu T, Huang W, Huang CC, Do Kwon Y, Louder RK, Luongo TS, McLellan JS, Pancera M, Yang Y, Zhang B, Flinko R, Foulke JS Jr, Sajadi MM, Kamin-Lewis R, Robinson JE, Martin L, Kwong PD, Guan Y, DeVico AL, Lewis GK, Pazgier M J Virol. 2014 Aug 27. pii: JVI.02194-14. PMID:25165110[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Acharya P, Tolbert WD, Gohain N, Wu X, Yu L, Liu T, Huang W, Huang CC, Do Kwon Y, Louder RK, Luongo TS, McLellan JS, Pancera M, Yang Y, Zhang B, Flinko R, Foulke JS Jr, Sajadi MM, Kamin-Lewis R, Robinson JE, Martin L, Kwong PD, Guan Y, DeVico AL, Lewis GK, Pazgier M. Structural Definition of an Antibody-Dependent Cellular Cytotoxicity (ADCC) Response Implicated in Reduced Risk for HIV-1 Infection. J Virol. 2014 Aug 27. pii: JVI.02194-14. PMID:25165110 doi:http://dx.doi.org/10.1128/JVI.02194-14

Contents


PDB ID 4h8w

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools