4lau
From Proteopedia
Crystal structure of human AR complexed with NADP+ and {2-[(4-bromobenzyl)carbamoyl]-5-chlorophenoxy}acetic acid
Structural highlights
FunctionALDR_HUMAN Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols with a broad range of catalytic efficiencies. Publication Abstract from PubMedIn this paper, we studied a designed series of aldose reductase (AR) inhibitors. The series was derived from a known AR binder, which had previously been shown to form a halogen bond between its bromine atom and the oxygen atom of the Thr-113 side chain of AR. In the series, the strength of the halogen bond was modulated by two factors, namely bromine-iodine substitution and the fluorination of the aromatic ring in several positions. The role of the single halogen bond in AR-ligand binding was elucidated by advanced binding free energy calculations involving the semiempirical quantum chemical Hamiltonian. The results were complemented with ultrahigh-resolution X-ray crystallography and IC50 measurements. All of the AR inhibitors studied were shown by X-ray crystallography to bind in an identical manner. Further, it was demonstrated that it was possible to decrease the IC50 value by about 1 order of magnitude by tuning the strength of the halogen bond by a monoatomic substitution. The calculations revealed that the protein-ligand interaction energy increased upon the substitution of iodine for bromine or upon the addition of electron-withdrawing fluorine atoms to the ring. However, the effect on the binding affinity was found to be more complex due to the change of the solvation/desolvation properties within the ligand series. The study shows that it is possible to modulate the strength of a halogen bond in a protein-ligand complex as was designed based on the previous studies of low-molecular-weight complexes. Modulation of aldose reductase inhibition by halogen bond tuning.,Fanfrlik J, Kolar M, Kamlar M, Hurny D, Ruiz FX, Cousido-Siah A, Mitschler A, Rezac J, Munusamy E, Lepsik M, Matejicek P, Vesely J, Podjarny A, Hobza P ACS Chem Biol. 2013 Nov 15;8(11):2484-92. doi: 10.1021/cb400526n. Epub 2013 Sep, 17. PMID:23988122[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Cousido-Siah A | Fanfrlik J | Hobza P | Kolar M | Mitschler A | Podjarny A | Ruiz FX