4lbo
From Proteopedia
Crystal structure of Human galectin-3 CRD in complex with a-GM3
Structural highlights
FunctionLEG3_HUMAN Galactose-specific lectin which binds IgE. May mediate with the alpha-3, beta-1 integrin the stimulation by CSPG4 of endothelial cells migration. Together with DMBT1, required for terminal differentiation of columnar epithelial cells during early embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA splicing factor. Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells.[1] [2] [3] Publication Abstract from PubMedGalectins have essential roles in pathological states including cancer, inflammation, angiogenesis and microbial infections. Endogenous receptors include members of the lacto- and neolacto-series glycosphingolipids present on mammalian cells and contain the tetrasaccharides lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) that form their core structural components and also ganglio-series glycosphingolipids. We present crystallographic structures of the carbohydrate recognition domain of human galectin-3, both wild type and a mutant (K176L) that influenced ligand affinity, in complex with LNT, LNnT and acetamido ganglioside a-GM3 (alpha2,3-sialyllactose). Key structural features revealed include galectin-3's demonstration of a binding mode towards gangliosides distinct from that to the lacto/neolacto-glycosphingolipids, with its capacity for recognising the core beta-galactoside region being challenged when the core oligosaccharide epitope of ganglio-series glycosphingolipids (GM3) is embedded within particular higher-molecular-weight glycans. The lacto- and neolacto- glycosphingolipids revealed different orientations of their terminal galactose in the galectin-3-bound LNT and LNnT structures that has significant ramifications for the capacity of galectin-3 to interact with higher-order lacto/neolacto-series glycosphingolipids such as ABH blood group antigens and the HNK-1 antigen that is common on leukocytes. LNnT also presents an important model for poly-N-acetyllactosamine-containing glycans and provides insight into galectin-3's accommodation of extended oligosaccharides such as the poly-N-acetyllactosamine-modified N- and O-glycans that, via galectin-3 interaction, facilitate progression of lung and bladder cancers, respectively. These findings provide the first atomic detail of galectin-3's interactions with the core structures of mammalian glycosphingolipids, providing information important in understanding the capacity of galectin-3 to engage with receptors identified as facilitators of major disease. Galectin-3 Interactions with Glycosphingolipids.,Collins PM, Bum-Erdene K, Yu X, Blanchard H J Mol Biol. 2013 Dec 8. pii: S0022-2836(13)00743-2. doi:, 10.1016/j.jmb.2013.12.004. PMID:24326249[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|