4lp6
From Proteopedia
Crystal Structure of Human Carbonic Anhydrase II in complex with a quinoline oligoamide foldamer
Structural highlights
DiseaseCAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] FunctionCAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Publication Abstract from PubMedIn the search of molecules that could recognize sizeable areas of protein surfaces, a series of ten helical aromatic oligoamide foldamers was synthesized on solid phase. The foldamers comprise three to five monomers carrying various proteinogenic side chains, and exist as racemic mixtures of interconverting right-handed and left-handed helices. Functionalization of the foldamers by a nanomolar ligand of human carbonic anhydrase II (HCA) ensured that they would be held in close proximity to the protein surface. Foldamer-protein interactions were screened by circular dichroism (CD). One foldamer displayed intense CD bands indicating that a preferred helix handedness is induced upon interacting with the protein surface. The crystal structure of the complex between this foldamer and HCA could be resolved at 2.1 A resolution and revealed a number of unanticipated protein-foldamer, foldamer-foldamer, and protein-protein interactions. Structure of a Complex Formed by a Protein and a Helical Aromatic Oligoamide Foldamer at 2.1 A Resolution.,Buratto J, Colombo C, Stupfel M, Dawson SJ, Dolain C, Langlois d'Estaintot B, Fischer L, Granier T, Laguerre M, Gallois B, Huc I Angew Chem Int Ed Engl. 2013 Nov 29. doi: 10.1002/anie.201309160. PMID:24288253[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|