Structural highlights
Publication Abstract from PubMed
The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad-spectrum Gram-negative antibiotics.
Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer.,Clayton GM, Klein DJ, Rickert KW, Patel SB, Kornienko M, Zugay-Murphy J, Reid JC, Tummala S, Sharma S, Singh SB, Miesel L, Lumb KJ, Soisson SM J Biol Chem. 2013 Oct 9. PMID:24108127[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Clayton GM, Klein DJ, Rickert KW, Patel SB, Kornienko M, Zugay-Murphy J, Reid JC, Tummala S, Sharma S, Singh SB, Miesel L, Lumb KJ, Soisson SM. Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer. J Biol Chem. 2013 Oct 9. PMID:24108127 doi:http://dx.doi.org/10.1074/jbc.M113.513028