4msw

From Proteopedia

Jump to: navigation, search

Y78 ester mutant of KcsA in high K+

Structural highlights

4msw is a 3 chain structure with sequence from Mus musculus and Streptomyces lividans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.06Å
Ligands:DGA, K, YTL
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0A0M4KEQ7_MOUSE

Publication Abstract from PubMed

K+ channels distinguish K+ from Na+ in the selectivity filter, which consists of four ion-binding sites (S1-S4, extracellular to intracellular) that are built mainly using the carbonyl oxygens from the protein backbone. In addition to ionic discrimination, the selectivity filter regulates the flow of ions across the membrane in a gating process referred to as C-type inactivation. A characteristic of C-type inactivation is a dependence on the permeant ion, but the mechanism by which permeant ions modulate C-type inactivation is not known. To investigate, we used amide-to-ester substitutions in the protein backbone of the selectivity filter to alter ion binding at specific sites and determined the effects on inactivation. The amide-to-ester substitutions in the protein backbone were introduced using protein semisynthesis or in vivo nonsense suppression approaches. We show that an ester substitution at the S1 site in the KcsA channel does not affect inactivation whereas ester substitutions at the S2 and S3 sites dramatically reduce inactivation. We determined the structure of the KcsA S2 ester mutant and found that the ester substitution eliminates K+ binding at the S2 site. We also show that an ester substitution at the S2 site in the KvAP channel has a similar effect of slowing inactivation. Our results link C-type inactivation to ion occupancy at the S2 site. Furthermore, they suggest that the differences in inactivation of K+ channels in K+ compared with Rb+ are due to different ion occupancies at the S2 site.

Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels.,Matulef K, Komarov AG, Costantino CA, Valiyaveetil FI Proc Natl Acad Sci U S A. 2013 Oct 15. PMID:24128761[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
6 reviews cite this structure
Subramanyam et al. (2015)
No citations found

See Also

References

  1. Matulef K, Komarov AG, Costantino CA, Valiyaveetil FI. Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels. Proc Natl Acad Sci U S A. 2013 Oct 15. PMID:24128761 doi:http://dx.doi.org/10.1073/pnas.1314356110

Contents


PDB ID 4msw

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools