4my4

From Proteopedia

Jump to: navigation, search

Crystal structure of phosphoglycerate mutase from Staphylococcus aureus.

Structural highlights

4my4 is a 1 chain structure with sequence from Staphylococcus aureus subsp. aureus NCTC 8325. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:MN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q2G029_STAA8 Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate (By similarity).[HAMAP-Rule:MF_01038][SAAS:SAAS011258_004_004839]

Publication Abstract from PubMed

Cofactor-independent phosphoglycerate mutase (iPGM), an important enzyme in glycolysis and gluconeogenesis, catalyses the isomerization of 2- and 3-phosphoglycerates by an Mn2+ -dependent phospho-transfer mechanism via a phospho-enzyme intermediate. Crystal structures of bi-domain iPGM from Staphylococcus aureus, together with substrate-bound forms, have revealed a new conformation of the enzyme, representing an intermediate state of domain movement. The substrate-binding site and the catalytic site are present in two distinct domains in the intermediate form. X-ray crystallography complemented by simulated dynamics has enabled delineation of the complete catalytic cycle, which includes binding of the substrate, followed by its positioning into the catalytic site, phospho-transfer and finally product release. The present work describes a novel mechanism of domain movement controlled by a hydrophobic patch that is exposed on domain closure and acts like a spring to keep the protein in open conformation. Domain closing occurs after substrate binding, and is essential for phospho-transfer, whereas the open conformation is a prerequisite for efficient substrate binding and product dissociation. A new model of catalysis has been proposed by correlating the hinge-bending motion with the phospho-transfer mechanism.

Complete catalytic cycle of cofactor-independent phosphoglycerate mutase involves a spring-loaded mechanism.,Roychowdhury A, Kundu A, Bose M, Gujar A, Mukherjee S, Das AK FEBS J. 2015 Jan 22. doi: 10.1111/febs.13205. PMID:25611430[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Roychowdhury A, Kundu A, Bose M, Gujar A, Mukherjee S, Das AK. Complete catalytic cycle of cofactor-independent phosphoglycerate mutase involves a spring-loaded mechanism. FEBS J. 2015 Jan 22. doi: 10.1111/febs.13205. PMID:25611430 doi:http://dx.doi.org/10.1111/febs.13205

Contents


PDB ID 4my4

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools