4ntt
From Proteopedia
Structure of the catalytic subunit of cAMP-dependent protein kinase bound to ADP and one magnesium ion
Structural highlights
FunctionKAPCA_MOUSE Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). TRPC1 activation by phosphorylation promotes Ca(2+) influx, essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Regulates negatively tight junction (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Isoform 2 phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT).[1] [2] [3] Publication Abstract from PubMedAlthough ADP release is the rate limiting step in product turnover by protein kinase A, the steps and motions involved in this process are not well resolved. Here we report the apo and ADP bound structures of the myristylated catalytic subunit of PKA at 2.9 and 3.5 A resolution, respectively. The ADP bound structure adopts a conformation that does not conform to the previously characterized open, closed, or intermediate states. In the ADP bound structure, the C-terminal tail and Gly-rich loop are more closed than in the open state adopted in the apo structure but are also much more open than the intermediate or closed conformations. Furthermore, ADP binds at the active site with only one magnesium ion, termed Mg2 from previous structures. These structures thus support a model where ADP release proceeds through release of the substrate and Mg1 followed by lifting of the Gly-rich loop and disengagement of the C-terminal tail. Coupling of these two structural elements with the release of the first metal ion fills in a key step in the catalytic cycle that has been missing and supports an ensemble of correlated conformational states that mediate the full catalytic cycle for a protein kinase. Molecular Features of Product Release for the PKA Catalytic Cycle.,Bastidas AC, Wu J, Taylor SS Biochemistry. 2014 Aug 8. PMID:25077557[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|