4nzo
From Proteopedia
Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 2,5-DI-O-BN-INSP4
Structural highlights
FunctionVIP2_HUMAN Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at positions 1 or 3 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates at position 1 or 3 PP-InsP5, produced by IP6Ks from InsP6, to produce (PP)2-InsP4.[1] [2] Publication Abstract from PubMedDiphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) is one of the mammalian PPIP5K isoforms responsible for synthesis of diphosphoinositol polyphosphates (inositol pyrophosphates; PP-InsPs), regulatory molecules that function at the interface of cell signaling and organismic homeostasis. The development of drugs that inhibit PPIP5K2 could have both experimental and therapeutic applications. Here, we describe a synthetic strategy for producing naturally occurring 5-PP-InsP4, as well as several inositol polyphosphate analogs, and we study their interactions with PPIP5K2 using biochemical and structural approaches. These experiments uncover an additional ligand-binding site on the surface of PPIP5K2, adjacent to the catalytic pocket. This site facilitates substrate capture from the bulk phase, prior to transfer into the catalytic pocket. In addition to demonstrating a "catch-and-pass" reaction mechanism in a small molecule kinase, we demonstrate that binding of our analogs to the substrate capture site inhibits PPIP5K2. This work suggests that the substrate-binding site offers new opportunities for targeted drug design. Synthetic Inositol Phosphate Analogs Reveal that PPIP5K2 Has a Surface-Mounted Substrate Capture Site that Is a Target for Drug Discovery.,Wang H, Godage HY, Riley AM, Weaver JD, Shears SB, Potter BV Chem Biol. 2014 May 22;21(5):689-99. doi: 10.1016/j.chembiol.2014.03.009. Epub, 2014 Apr 24. PMID:24768307[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|