4oh9

From Proteopedia

Jump to: navigation, search

Crystal Structure of the human MST2 SARAH homodimer

Structural highlights

4oh9 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.699Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STK3_HUMAN Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250. In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259'. Phosphorylates MOBKL1A and RASSF2. Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Publication Abstract from PubMed

Despite recent progress in research on the Hippo signalling pathway, the structural information available in this area is extremely limited. Intriguingly, the homodimeric and heterodimeric interactions of mammalian sterile 20-like (MST) kinases through the so-called `SARAH' (SAV/RASSF/HPO) domains play a critical role in cellular homeostasis, dictating the fate of the cell regarding cell proliferation or apoptosis. To understand the mechanism of the heterodimerization of SARAH domains, the three-dimensional structures of an MST1-RASSF5 SARAH heterodimer and an MST2 SARAH homodimer were determined by X-ray crystallography and were analysed together with that previously determined for the MST1 SARAH homodimer. While the structure of the MST2 homodimer resembled that of the MST1 homodimer, the MST1-RASSF5 heterodimer showed distinct structural features. Firstly, the six N-terminal residues (Asp432-Lys437), which correspond to the short N-terminal 310-helix h1 kinked from the h2 helix in the MST1 homodimer, were disordered. Furthermore, the MST1 SARAH domain in the MST1-RASSF5 complex showed a longer helical structure (Ser438-Lys480) than that in the MST1 homodimer (Val441-Lys480). Moreover, extensive polar and nonpolar contacts in the MST1-RASSF5 SARAH domain were identified which strengthen the interactions in the heterodimer in comparison to the interactions in the homodimer. Denaturation experiments performed using urea also indicated that the MST-RASSF heterodimers are substantially more stable than the MST homodimers. These findings provide structural insights into the role of the MST1-RASSF5 SARAH domain in apoptosis signalling.

Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway.,Hwang E, Cheong HK, Mushtaq AU, Kim HY, Yeo KJ, Kim E, Lee WC, Hwang KY, Cheong C, Jeon YH Acta Crystallogr D Biol Crystallogr. 2014 Jul 1;70(Pt 7):1944-53. doi:, 10.1107/S139900471400947X. Epub 2014 Jun 29. PMID:25004971[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
11 reviews cite this structure
Rawat et al. (2015)
No citations found

See Also

References

  1. Creasy CL, Chernoff J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene. 1995 Dec 29;167(1-2):303-6. PMID:8566796
  2. Taylor LK, Wang HC, Erikson RL. Newly identified stress-responsive protein kinases, Krs-1 and Krs-2. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10099-104. PMID:8816758
  3. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005 Mar 17;24(12):2076-86. PMID:15688006 doi:1208445
  4. Callus BA, Verhagen AM, Vaux DL. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 2006 Sep;273(18):4264-76. Epub 2006 Aug 23. PMID:16930133 doi:EJB5427
  5. Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008 Mar 11;18(5):311-21. doi: 10.1016/j.cub.2008.02.006. PMID:18328708 doi:10.1016/j.cub.2008.02.006
  6. Hirabayashi S, Nakagawa K, Sumita K, Hidaka S, Kawai T, Ikeda M, Kawata A, Ohno K, Hata Y. Threonine 74 of MOB1 is a putative key phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related kinase 1. Oncogene. 2008 Jul 17;27(31):4281-92. doi: 10.1038/onc.2008.66. Epub 2008 Mar 24. PMID:18362890 doi:10.1038/onc.2008.66
  7. Cooper WN, Hesson LB, Matallanas D, Dallol A, von Kriegsheim A, Ward R, Kolch W, Latif F. RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene. 2009 Aug 20;28(33):2988-98. doi: 10.1038/onc.2009.152. Epub 2009 Jun, 15. PMID:19525978 doi:10.1038/onc.2009.152
  8. Kilili GK, Kyriakis JM. Mammalian Ste20-like kinase (Mst2) indirectly supports Raf-1/ERK pathway activity via maintenance of protein phosphatase-2A catalytic subunit levels and consequent suppression of inhibitory Raf-1 phosphorylation. J Biol Chem. 2010 May 14;285(20):15076-87. doi: 10.1074/jbc.M109.078915. Epub, 2010 Mar 8. PMID:20212043 doi:10.1074/jbc.M109.078915
  9. Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol. 2010 Dec;12(12):1166-76. doi: 10.1038/ncb2120. Epub 2010 Nov 14. PMID:21076410 doi:10.1038/ncb2120
  10. Park Y, Park J, Lee Y, Lim W, Oh BC, Shin C, Kim W, Lee Y. Mammalian MST2 kinase and human Salvador activate and reduce estrogen receptor alpha in the absence of ligand. J Mol Med (Berl). 2011 Feb;89(2):181-91. doi: 10.1007/s00109-010-0698-y. Epub, 2010 Nov 23. PMID:21104395 doi:10.1007/s00109-010-0698-y
  11. Hwang E, Cheong HK, Mushtaq AU, Kim HY, Yeo KJ, Kim E, Lee WC, Hwang KY, Cheong C, Jeon YH. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr D Biol Crystallogr. 2014 Jul 1;70(Pt 7):1944-53. doi:, 10.1107/S139900471400947X. Epub 2014 Jun 29. PMID:25004971 doi:http://dx.doi.org/10.1107/S139900471400947X

Contents


PDB ID 4oh9

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools