Structural highlights
Function
FSAA_ECOLI Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone (DHA) and D-glyceraldehyde 3-phosphate via an aldolization reaction. Can utilize several aldehydes as acceptor compounds in vitro, and hydroxyacetone (HA) or 1-hydroxy-butan-2-one as alternative donor substrate. Is also able to catalyze the direct stereoselective self-aldol addition of glycolaldehyde to furnish D-(-)-threose, and cross-aldol reactions of glycolaldehyde to other aldehyde acceptors. Is not able to cleave fructose, fructose 1-phosphate, glucose 6-phosphate, sedoheptulose 1,7-bisphosphate, xylulose 5-phosphate, ribulose 5-phosphate, and fructose 1,6-bisphosphate; cannot use dihydroxyacetone phosphate as donor compound nor D-glyceraldehyde as acceptor. Does not display transaldolase activity.[1] [HAMAP-Rule:MF_00496][2] [3]
See Also
References
- ↑ Schurmann M, Sprenger GA. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem. 2001 Apr 6;276(14):11055-61. Epub 2000 Dec 18. PMID:11120740 doi:http://dx.doi.org/10.1074/jbc.M008061200
- ↑ Sugiyama M, Hong Z, Liang PH, Dean SM, Whalen LJ, Greenberg WA, Wong CH. D-Fructose-6-phosphate aldolase-catalyzed one-pot synthesis of iminocyclitols. J Am Chem Soc. 2007 Nov 28;129(47):14811-7. Epub 2007 Nov 7. PMID:17985886 doi:http://dx.doi.org/10.1021/ja073911i
- ↑ Garrabou X, Castillo JA, Guerard-Helaine C, Parella T, Joglar J, Lemaire M, Clapes P. Asymmetric self- and cross-aldol reactions of glycolaldehyde catalyzed by D-fructose-6-phosphate aldolase. Angew Chem Int Ed Engl. 2009;48(30):5521-5. doi: 10.1002/anie.200902065. PMID:19554584 doi:http://dx.doi.org/10.1002/anie.200902065