4tsy
From Proteopedia
Crystal structure of FraC with lipids
Structural highlights
FunctionACTPC_ACTFR Pore-forming protein that forms cations-selective hydrophilic pores of around 1 nm and causes cardiac stimulation and hemolysis. Pore formation is a multi-step process that involves specific recognition of membrane sphingomyelin (but neither cholesterol nor phosphatidylcholine) using aromatic rich region and adjacent phosphocholine (POC) binding site, firm binding to the membrane (mainly driven by hydrophobic interactions) accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerization of several monomers.[1] Publication Abstract from PubMedPore-forming toxins (PFT) are water-soluble proteins that possess the remarkable ability to self-assemble on the membrane of target cells, where they form pores causing cell damage. Here, we elucidate the mechanism of action of the haemolytic protein fragaceatoxin C (FraC), a alpha-barrel PFT, by determining the crystal structures of FraC at four different stages of the lytic mechanism, namely the water-soluble state, the monomeric lipid-bound form, an assembly intermediate and the fully assembled transmembrane pore. The structure of the transmembrane pore exhibits a unique architecture composed of both protein and lipids, with some of the lipids lining the pore wall, acting as assembly cofactors. The pore also exhibits lateral fenestrations that expose the hydrophobic core of the membrane to the aqueous environment. The incorporation of lipids from the target membrane within the structure of the pore provides a membrane-specific trigger for the activation of a haemolytic toxin. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid.,Tanaka K, Caaveiro JM, Morante K, Gonzalez-Manas JM, Tsumoto K Nat Commun. 2015 Feb 26;6:6337. doi: 10.1038/ncomms7337. PMID:25716479[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|