4tua

From Proteopedia

Jump to: navigation, search

Crystal structure of ASL-Thr bound to Codon ACC-A on the Ribosome

Structural highlights

4tua is a 20 chain structure with sequence from Thermus thermophilus HB8. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.6Å
Ligands:MG, PAR, PPU, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RS2_THET8 Spans the head-body hinge region of the 30S subunit. Is loosely associated with the 30S subunit.[HAMAP-Rule:MF_00291_B]

Publication Abstract from PubMed

The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNA(SufJ), a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNA(SufJ) contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASL(SufJ) or tRNA(SufJ) does not affect its affinity for the A site of the ribosome. Structural analyses of both ASL(SufJ) and ASL(Thr) bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34-37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASL(SufJ) imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNA(SufJ) during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.

Structural insights into translational recoding by frameshift suppressor tRNASufJ.,Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM RNA. 2014 Dec;20(12):1944-54. doi: 10.1261/rna.046953.114. Epub 2014 Oct 28. PMID:25352689[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM. Structural insights into translational recoding by frameshift suppressor tRNASufJ. RNA. 2014 Dec;20(12):1944-54. doi: 10.1261/rna.046953.114. Epub 2014 Oct 28. PMID:25352689 doi:http://dx.doi.org/10.1261/rna.046953.114

Contents


PDB ID 4tua

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools