4ub6

From Proteopedia

Jump to: navigation, search

Native structure of photosystem II (dataset-1) by a femtosecond X-ray laser

Structural highlights

4ub6 is a 20 chain structure with sequence from Thermostichus vulcanus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.95Å
Ligands:BCR, BCT, CA, CL, CLA, DGD, FE2, FME, GOL, HEC, HEM, HTG, LHG, LMG, LMT, MG, PHO, PL9, SQD
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PSBA_THEVL D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01379]

Publication Abstract from PubMed

Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 angstrom resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 angstroms using femtosecond X-ray pulses of the SPring-8 angstrom compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 angstroms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation.

Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses.,Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR Nature. 2015 Jan 1;517(7532):99-103. doi: 10.1038/nature13991. Epub 2014 Nov 26. PMID:25470056[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR. Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature. 2015 Jan 1;517(7532):99-103. doi: 10.1038/nature13991. Epub 2014 Nov 26. PMID:25470056 doi:http://dx.doi.org/10.1038/nature13991

Contents


PDB ID 4ub6

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools