4wzj

From Proteopedia

Jump to: navigation, search

Spliceosomal U4 snRNP core domain

Structural highlights

4wzj is a 96 chain structure with sequence from Homo sapiens. This structure supersedes the now removed PDB entries 4v5u, 2y9a, 2y9b, 2y9c and 2y9d. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.6Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SMD3_HUMAN Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner.[1]

Publication Abstract from PubMed

The spliceosome is a dynamic macromolecular machine that assembles on pre-messenger RNA substrates and catalyses the excision of non-coding intervening sequences (introns). Four of the five major components of the spliceosome, U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), contain seven Sm proteins (SmB/B', SmD1, SmD2, SmD3, SmE, SmF and SmG) in common. Following export of the U1, U2, U4 and U5 snRNAs to the cytoplasm, the seven Sm proteins, chaperoned by the survival of motor neurons (SMN) complex, assemble around a single-stranded, U-rich sequence called the Sm site in each small nuclear RNA (snRNA), to form the core domain of the respective snRNP particle. Core domain formation is a prerequisite for re-import into the nucleus, where these snRNPs mature via addition of their particle-specific proteins. Here we present a crystal structure of the U4 snRNP core domain at 3.6 A resolution, detailing how the Sm site heptad (AUUUUUG) binds inside the central hole of the heptameric ring of Sm proteins, interacting one-to-one with SmE-SmG-SmD3-SmB-SmD1-SmD2-SmF. An irregular backbone conformation of the Sm site sequence combined with the asymmetric structure of the heteromeric protein ring allows each base to interact in a distinct manner with four key residues at equivalent positions in the L3 and L5 loops of the Sm fold. A comparison of this structure with the U1 snRNP at 5.5 A resolution reveals snRNA-dependent structural changes outside the Sm fold, which may facilitate the binding of particle-specific proteins that are crucial to biogenesis of spliceosomal snRNPs.

Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis.,Leung AK, Nagai K, Li J Nature. 2011 Apr 24. PMID:21516107[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Pillai RS, Will CL, Luhrmann R, Schumperli D, Muller B. Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J. 2001 Oct 1;20(19):5470-9. PMID:11574479 doi:10.1093/emboj/20.19.5470
  2. Leung AK, Nagai K, Li J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature. 2011 Apr 24. PMID:21516107 doi:10.1038/nature09956

Contents


PDB ID 4wzj

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools