4z66

From Proteopedia

Jump to: navigation, search

Nucleosome disassembly by RSC and SWI/SNF is enhanced by H3 acetylation near the nucleosome dyad axis

Structural highlights

4z66 is a 10 chain structure with sequence from Homo sapiens and Xenopus laevis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:ALY
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

H32_XENLA Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

Publication Abstract from PubMed

Signaling associated with transcription activation occurs through post-translational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain / lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers" that promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remain unclear. Using x-ray crystallography, we show that acetylated lysines 115 and 122 in histone H3 are solvent-accessible, but in biochemical assays appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization as was previously shown for acetylated lysines in H3 histone tails. Instead we find that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to seven-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serve as crucial regulators of nucleosomal dynamics distinct from the histone code readers and writers.

Histone acetylation near the nucleosome dyad axis enhances nucleosome disassembly by RSC and SWI/SNF.,Chatterjee N, North JA, Dechassa ML, Manohar M, Prasad R, Luger K, Ottesen JJ, Poirier MG, Bartholomew B Mol Cell Biol. 2015 Sep 28. pii: MCB.00441-15. PMID:26416878[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Chatterjee N, North JA, Dechassa ML, Manohar M, Prasad R, Luger K, Ottesen JJ, Poirier MG, Bartholomew B. Histone acetylation near the nucleosome dyad axis enhances nucleosome disassembly by RSC and SWI/SNF. Mol Cell Biol. 2015 Sep 28. pii: MCB.00441-15. PMID:26416878 doi:http://dx.doi.org/10.1128/MCB.00441-15

Contents


PDB ID 4z66

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools