4zyc
From Proteopedia
Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53-MDM2 interaction with a distinct binding mode: Hdm2 (MDM2) complexed with cpd5
Structural highlights
DiseaseMDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding. FunctionMDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Publication Abstract from PubMedBlocking the interaction between the p53 tumor suppressor and its regulatory protein MDM2 is a promising therapeutic concept under current investigation in oncology drug research. We report here the discovery of the first representatives of a new class of small molecule inhibitors of this protein-protein interaction: the dihydroisoquinolinones. Starting from an initial hit identified by virtual screening, a derivatization program has resulted in compound 11, a low nanomolar inhibitor of the p53-MDM2 interaction showing significant cellular activity. Initially based on a binding mode hypothesis, this effort was then guided by a X-ray co-crystal structure of MDM2 in complex with one of the synthesized analogs. The X-ray structure revealed an unprecedented binding mode for p53-MDM2 inhibitors. Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53-MDM2 interaction with a distinct binding mode.,Gessier F, Kallen J, Jacoby E, Chene P, Stachyra-Valat T, Ruetz S, Jeay S, Holzer P, Masuya K, Furet P Bioorg Med Chem Lett. 2015 Jun 23. pii: S0960-894X(15)00651-4. doi:, 10.1016/j.bmcl.2015.06.058. PMID:26141769[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 14 reviews cite this structure No citations found See AlsoReferences
|
|