5aht
From Proteopedia
Third WW domain from the E3 ubiquitin-protein ligase NEDD4
Structural highlights
FunctionNEDD4_HUMAN E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Involved in the pathway leading to the degradation of VEGFR-2/KDFR, independently of its ubiquitin-ligase activity. Monoubiquitinates IGF1R at multiple sites, thus leading to receptor internalization and degradation in lysosomes. Ubiquitinates FGFR1, leading to receptor internalization and degradation in lysosomes. According to PubMed:18562292 the direct link between NEDD4 and PTEN regulation through polyubiquitination described in PubMed:17218260 is questionable. Involved in ubiquitination of ERBB4 intracellular domain E4ICD. Involved in the budding of many viruses. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. Ubiquitinates TNK2 and regulates EGF-induced degradation of EGFR and TNF2.[1] [2] [3] [4] [5] Publication Abstract from PubMedThe four WW domains of human Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) interact with the PPxY (PY) motifs of the human epithelial Na+ channel (hENaC) subunits, with the third WW domain (WW3*) showing the highest affinity. We have shown previously that the alpha-hENaC PY motif binding interface of WW3* undergoes conformational exchange on the millisecond time scale, indicating that conformational sampling plays a role in peptide recognition. To further understand this role, the structure and dynamics of hNedd4-1 WW3* were investigated. The nuclear Overhauser effect-derived structure of apo-WW3* resembles the domain in complex with the alpha-hENaC peptide, although particular side chain conformations change upon peptide binding, which was further investigated by molecular dynamics simulations. Model-free analysis of the 15N nuclear magnetic resonance spin relaxation data showed that the apo and peptide-bound states of WW3* have similar backbone picosecond to nanosecond time scale dynamics. However, apo-WW3* exhibits pronounced chemical exchange on the millisecond time scale that is quenched upon peptide binding. 1HN and 15N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments at various temperatures revealed that apo-WW3* exists in an equilibrium between the natively folded peptide binding-competent state and a random coil-like denatured state. The thermodynamics of the folding equilibrium was determined by fitting a thermal denaturation profile monitored by circular dichroism spectroscopy in combination with the CPMG data, leading to the conclusion that the unfolded state is populated to approximately 20% at 37 degrees C. These results show that the binding of the hNedd4-1 WW3* domain to alpha-hENaC is coupled to the folding equilibrium. The Nedd4-1 WW Domain Recognizes the PY Motif Peptide through Coupled Folding and Binding Equilibria.,Panwalkar V, Neudecker P, Schmitz M, Lecher J, Schulte M, Medini K, Stoldt M, Brimble MA, Willbold D, Dingley AJ Biochemistry. 2016 Jan 15. PMID:26685112[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|