5dnj

From Proteopedia

Jump to: navigation, search

Mouse Polo-box domain and Peptide analog 702

Structural highlights

5dnj is a 2 chain structure with sequence from Mus musculus and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:56A, 707, NH2, TPO
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PLK1_MOUSE Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis. Polo-like kinase proteins acts by binding and phosphorylating proteins are that already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, PPP1R12A/MYPT1, PRC1, RACGAP1/CYK4, SGOL1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1 and WEE1. Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL. NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation. Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins. Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1. Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains. Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation. Promotes the central spindle recruitment of ECT2. Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1. Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1. Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase. Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity. Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2. PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation. Required for kinetochore localization of BUB1B. Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2. Phosphorylates SGOL1: required for spindle pole localization of isoform 3 of SGOL1 and plays a role in regulating its centriole cohesion function. Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome. Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53. Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA. Contributes to the regulation of AURKA function. Also required for recovery after DNA damage checkpoint and entry into mitosis.Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (By similarity). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (PubMed:25533956). Phosphorylates CEP68 and is required for its degradation (By similarity).[UniProtKB:P53350][1] [2]

Publication Abstract from PubMed

In a mammalian oocyte, completion of meiosis is suspended until fertilization by a sperm, and the cell cycle is arrested by a biochemical activity called cytostatic factor (CSF). Emi2 is one of the CSFs, and it maintains the protein level of maturation promoting factor (MPF) by inhibiting ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Degradation of Emi2 via ubiquitin-mediated proteolysis after fertilization requires phosphorylation by Polo-like kinase 1 (Plk1). Therefore, recognition and phosphorylation of Emi2 by Plk1 are crucial steps for cell cycle resumption, but the binding mode of Emi2 and Plk1 is poorly understood. Using biochemical assays and X-ray crystallography, we found that two phosphorylated threonines (Thr(152) and Thr(176)) in Emi2 are each responsible for the recruitment of one Plk1 molecule by binding to its C-terminal polo box domain (PBD). We also found that meiotic maturation and meiosis resumption via parthenogenetic activation were impaired when Emi2 interaction with Plk1-PBD was blocked by a peptidomimetic called 103-8. Because of the inherent promiscuity of kinase inhibitors, our results suggest that targeting PBD of Plk1 may be an effective strategy for the development of novel and specific contraceptive agents that block oocyte maturation and/or fertilization.

Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization.,Jia JL, Han YH, Kim HC, Ahn M, Kwon JW, Luo Y, Gunasekaran P, Lee SJ, Lee KS, Kyu Bang J, Kim NH, Namgoong S Sci Rep. 2015 Oct 13;5:14626. doi: 10.1038/srep14626. PMID:26459104[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
3 reviews cite this structure
Kalous et al. (2023)
No citations found

See Also

References

  1. Mondal G, Ohashi A, Yang L, Rowley M, Couch FJ. Tex14, a Plk1-regulated protein, is required for kinetochore-microtubule attachment and regulation of the spindle assembly checkpoint. Mol Cell. 2012 Mar 9;45(5):680-95. doi: 10.1016/j.molcel.2012.01.013. PMID:22405274 doi:http://dx.doi.org/10.1016/j.molcel.2012.01.013
  2. Kim J, Ishiguro K, Nambu A, Akiyoshi B, Yokobayashi S, Kagami A, Ishiguro T, Pendas AM, Takeda N, Sakakibara Y, Kitajima TS, Tanno Y, Sakuno T, Watanabe Y. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24. PMID:25533956 doi:http://dx.doi.org/10.1038/nature14097
  3. Jia JL, Han YH, Kim HC, Ahn M, Kwon JW, Luo Y, Gunasekaran P, Lee SJ, Lee KS, Kyu Bang J, Kim NH, Namgoong S. Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization. Sci Rep. 2015 Oct 13;5:14626. doi: 10.1038/srep14626. PMID:26459104 doi:http://dx.doi.org/10.1038/srep14626

Contents


PDB ID 5dnj

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools