5eg2

From Proteopedia

Jump to: navigation, search

SET7/9 N265A in complex with AdoHcy and TAF10 peptide

Structural highlights

5eg2 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.55Å
Ligands:MLZ, NA, SAH
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SETD7_HUMAN Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.[1] [2] [3] [4] [5] [6]

Publication Abstract from PubMed

Recent studies have demonstrated that carbon-oxygen (CH...O) hydrogen bonds have important roles in S-adenosylmethionine (AdoMet) recognition and catalysis in methyltransferases. Here, we investigate noncovalent interactions that occur between the AdoMet sulfur cation and oxygen atoms in methyltransferase active sites. These interactions represent sulfur-oxygen (S...O) chalcogen bonds in which the oxygen atom donates a lone pair of electrons to the sigma antibonding orbital of the AdoMet sulfur atom. Structural, biochemical, and computational analyses of an asparagine mutation in the lysine methyltransferase SET7/9 that abolishes AdoMet S...O chalcogen bonding reveal that this interaction enhances substrate binding affinity relative to the product S-adenosylhomocysteine. Corroborative quantum mechanical calculations demonstrate that sulfonium systems form strong S...O chalcogen bonds relative to their neutral thioether counterparts. An inspection of high-resolution crystal structures reveals the presence of AdoMet S...O chalcogen bonding in different classes of methyltransferases, illustrating that these interactions are not limited to SET domain methyltransferases. Together, these results demonstrate that S...O chalcogen bonds contribute to AdoMet recognition and can enable methyltransferases to distinguish between substrate and product.

Sulfur-Oxygen Chalcogen Bonding Mediates AdoMet Recognition in the Lysine Methyltransferase SET7/9.,Fick RJ, Kroner GM, Nepal B, Magnani R, Horowitz S, Houtz RL, Scheiner S, Trievel RC ACS Chem Biol. 2016 Jan 12. PMID:26713889[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
6 reviews cite this structure
Vogel et al. (2019)
No citations found

See Also

References

  1. Martens JH, Verlaan M, Kalkhoven E, Zantema A. Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol. 2003 Mar;23(5):1808-16. PMID:12588998
  2. Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell. 2004 Apr 23;14(2):175-82. PMID:15099517
  3. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem. 2005 Oct 28;280(43):36244-53. Epub 2005 Sep 1. PMID:16141209 doi:M505741200
  4. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006 Nov 30;444(7119):629-32. Epub 2006 Nov 15. PMID:17108971 doi:10.1038/nature05287
  5. Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature. 2003 Feb 6;421(6923):652-6. Epub 2003 Jan 22. PMID:12540855 doi:10.1038/nature01378
  6. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D. Regulation of p53 activity through lysine methylation. Nature. 2004 Nov 18;432(7015):353-60. Epub 2004 Nov 3. PMID:15525938 doi:10.1038/nature03117
  7. Fick RJ, Kroner GM, Nepal B, Magnani R, Horowitz S, Houtz RL, Scheiner S, Trievel RC. Sulfur-Oxygen Chalcogen Bonding Mediates AdoMet Recognition in the Lysine Methyltransferase SET7/9. ACS Chem Biol. 2016 Jan 12. PMID:26713889 doi:http://dx.doi.org/10.1021/acschembio.5b00852

Contents


PDB ID 5eg2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools